Проверенные ответы содержат информацию, которая заслуживает доверия. На «Знаниях» вы найдёте миллионы решений, отмеченных самими пользователями как лучшие, но только проверка ответа нашими экспертами даёт гарантию его правильности.
Начнем с того что такое дробно-рациональное уравнение:
Определение: Дробно рациональное уравнение - рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
НАПРИМЕР:
МЫ видим что уравнение содержит дробные выражения где переменная х и в Числителе и в Знаменателе дроби.
Теперь попробуем его решить
Для этого приведем дроби к общему знаменателю
Далее выполним сложение дробей
А теперь рассуждаем так: Дроби равны если РАВНЫ и Числители и Знаменатели.
И мы приравниваем числители и решаем уравнение.
Находим корни этого уравнения х=0 или х= -1
И радостно пишем ответ... НО
А куда же мы дели ЗНАМЕНАТЕЛЬ?
Вот так его выкинули? Вот в этом и ошибка.
Мы ОБЯЗАНЫ проверить чтобы эти корни не обращали наш знаменатель в НОЛЬ. Ведь на НОЛЬ делить нельзя!!!
Тут как раз и получился посторонний корень х= -1
Как избежать такой ошибки:
1. Убедиться точно ли перед тобой рациональное уравнение (т.е. оно не содержит корней);
2. Определить ОДЗ (т.е. посмотреть при каких х знаменатель равен НУЛЮ);
3. Найти общий знаменатель дробей и умножить на него обе части уравнения;
4. При равных знаменателях приравнять числители и решить получившееся целое уравнение;
5. Исключить из его корней те, которые обращают в ноль знаменатель дробей.
1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях. 2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч. 3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не принадлежит графику функции y=x^2. 4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти. Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции.
HoteМодератор
Это Проверенный ответ
×
Проверенные ответы содержат информацию, которая заслуживает доверия. На «Знаниях» вы найдёте миллионы решений, отмеченных самими пользователями как лучшие, но только проверка ответа нашими экспертами даёт гарантию его правильности.
Начнем с того что такое дробно-рациональное уравнение:
Определение: Дробно рациональное уравнение - рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
НАПРИМЕР:
МЫ видим что уравнение содержит дробные выражения где переменная х и в Числителе и в Знаменателе дроби.
Теперь попробуем его решить
Для этого приведем дроби к общему знаменателю
Далее выполним сложение дробей
А теперь рассуждаем так: Дроби равны если РАВНЫ и Числители и Знаменатели.
И мы приравниваем числители и решаем уравнение.
Находим корни этого уравнения х=0 или х= -1
И радостно пишем ответ... НО
А куда же мы дели ЗНАМЕНАТЕЛЬ?
Вот так его выкинули? Вот в этом и ошибка.
Мы ОБЯЗАНЫ проверить чтобы эти корни не обращали наш знаменатель в НОЛЬ. Ведь на НОЛЬ делить нельзя!!!
Тут как раз и получился посторонний корень х= -1
Как избежать такой ошибки:
1. Убедиться точно ли перед тобой рациональное уравнение (т.е. оно не содержит корней);
2. Определить ОДЗ (т.е. посмотреть при каких х знаменатель равен НУЛЮ);
3. Найти общий знаменатель дробей и умножить на него обе части уравнения;
4. При равных знаменателях приравнять числители и решить получившееся целое уравнение;
5. Исключить из его корней те, которые обращают в ноль знаменатель дробей.
Подробнее - на -
Объяснение: