аргумент комплексного числа argz - это угол между вектором, соответствующим этому комплексному числу, если изобразить его на комплексной плоскости, и положительным направлением оси ох; если считать угол против часовой стрелки, от оси к вектору, то угол будет со знаком +, если считать по часовой стрелке, то угол нужно брать со знаком -.
z = 1 - i это вектор, координаты его имеют вид (1 ; -1).
верны соотношения для угла fi = arg z:
cos fi = x / |z|
sin fi = y / |z|
здесь |z| = sqrt(x^2 + y^2) - модуль комплексного числа z (он же - длина вектора с координатами (x; y), где z = x + yi )
таким образом, получаем, |z| = sqrt ( 1^2 + (-1)^2 ) = sqrt 2
первое число дает остаток 1 при делении на 4 значит куб первого числа при делении на 4 даст такой же остаток как и 1 в кубе, т.е как число 1*1*1=1 число 1 при делении на 4 дает остаток 1 итого куб первого числа при делении на 4 даст остаток 1
второе число дает остаток 3 при делении на 4 значит куб второго числа при делении на 4 даст такой же остаток как и 3 в кубе, т.е. как число 3*3*3=27 число 27 при делении на 4 дает остаток 3
сумма кубов первого и второго чисел при делении на 4 даст такой же остаток какой даст при делении на 4 сумма остатков чисел при делении на 4, т.е. как число 1+3=4, так как 4 при делении на 4 дает остаток 0, то сумма кубов этих чисел кратна 4 ---------------------------------- второй
так как первое число при делении на 4 дает остаток 1, то его можно записать в виде 4n+1, где n - некоторое целое число аналогично второе можно записать в виде 4k+3, где k - некоторое целое число
сумма кубов этих чисел а значит сумма кубов делится нацело на 4. Доказано
аргумент комплексного числа argz - это угол между вектором, соответствующим этому комплексному числу, если изобразить его на комплексной плоскости, и положительным направлением оси ох; если считать угол против часовой стрелки, от оси к вектору, то угол будет со знаком +, если считать по часовой стрелке, то угол нужно брать со знаком -.
z = 1 - i это вектор, координаты его имеют вид (1 ; -1).
верны соотношения для угла fi = arg z:
cos fi = x / |z|
sin fi = y / |z|
здесь |z| = sqrt(x^2 + y^2) - модуль комплексного числа z (он же - длина вектора с координатами (x; y), где z = x + yi )
таким образом, получаем, |z| = sqrt ( 1^2 + (-1)^2 ) = sqrt 2
cos fi = 1 / sqrt 2
sin fi = -1 / sqrt 2
такой угол - это -pi/4
arg z = -pi/4