Решим первое неравенство как квадратное уравнение:
-х²+х+6=0/-1
х²-х-6=0
х₁,₂=(1±√1+24)/2
х₁,₂=(1±√25)/2
х₁,₂=(1±5)/2
х₁= -4/2
х₁= -2
х₂=6/2
х₂=3
Смотрим на уравнение. Уравнение параболы.
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -2 и х=3. По графику ясно видно, что у<=0 (как в неравенстве) слева и справа от значений х, то есть, решения неравенства в интервале х∈ (-∞, -2]∪[3, +∞).
Значения х= -2 и х=3 входят в число решений неравенства, скобка квадратная.
Это решение первого неравенства.
Решим второе неравенство.
5-3(x+1)>x
5-3х-3>x
-3x-x> -2
-4x> -2
x< -2/-4 знак меняется
x<0,5
х∈ (-∞, 0,5) - решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь на числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Отмечаем на числовой оси числа -2, 0,5, 3.
Штриховка от -2 до - бесконечности, от 0,5 до - бесконечности, от 3 до + бесконечности.
Пересечение от -2 до - бесконечности.
Решения системы неравенства находятся в интервале х∈ (-∞, -2].
если коэффициенты действительно такие, то это уравнение решается лишь за формулами Кардано (на подобие формул корней квадратного уравнения, только для уравнения 4-го степени). И тут не применишь и метод неопределенных коэффициентов (ax^2+bx+c)(dx^2+ex+f)=5x^4-12x^3+11x^2-12x+5, так как коэффициенты b,c,e,f - иррациональны. Формулы Кардано в обычном курсе алгебры в школе не изучают, в углубленном курсе кажется так же не изучают. Прикрепляю скрин
, , , , ,
два случая: 1)
2)
ответ: 1 и 5 ------------------------------
- парабола ветками вверх, нам нужен случай, когда вершина параболы лежит на оси ОХ, т.е. когда парабола пересекает эту ось в одной точке. И это будет тогда и только тогда, когда дискриминант обращается в нуль:
х∈ (-∞, -2].
Объяснение:
Решить систему неравенств:
-х²+х+6<=0
5-3(x+1)>x
Решим первое неравенство как квадратное уравнение:
-х²+х+6=0/-1
х²-х-6=0
х₁,₂=(1±√1+24)/2
х₁,₂=(1±√25)/2
х₁,₂=(1±5)/2
х₁= -4/2
х₁= -2
х₂=6/2
х₂=3
Смотрим на уравнение. Уравнение параболы.
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -2 и х=3. По графику ясно видно, что у<=0 (как в неравенстве) слева и справа от значений х, то есть, решения неравенства в интервале х∈ (-∞, -2]∪[3, +∞).
Значения х= -2 и х=3 входят в число решений неравенства, скобка квадратная.
Это решение первого неравенства.
Решим второе неравенство.
5-3(x+1)>x
5-3х-3>x
-3x-x> -2
-4x> -2
x< -2/-4 знак меняется
x<0,5
х∈ (-∞, 0,5) - решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь на числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Отмечаем на числовой оси числа -2, 0,5, 3.
Штриховка от -2 до - бесконечности, от 0,5 до - бесконечности, от 3 до + бесконечности.
Пересечение от -2 до - бесконечности.
Решения системы неравенства находятся в интервале х∈ (-∞, -2].