Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
Заметим, что у нас повторяется постоянно cos x - непорядок. Пусть cos x = t, |t| <=1 - вполне логично. Тогда выражение перепишется в виде: t^2 + t + 2
Переформулируем теперь данную задачу с учётом замены. Казалось бы, надо просто найти наименьшее значение квадратного трёхчлена и задача решена. Но в таких ситуациях всегда есть подводный камень. Потому что надо помнить, что мы перешли от ограниченной функции к переменной t, которая сама по себе может принимать любые значения. В то же время, раз косинус принимает значения из отрезка [-1;1], мы должны то же ограничение наложить на переменную t. Поэтому, мы обязаны сказать, что t∈[-1,1]. И поэтому задача сводится к тому, чтобы найти область значения квадратного трёхчлена не везде, а только НА ЭТОМ ОТРЕЗКЕ.
Сделаем это. Вычислим абсциссу вершины параболы: Замечаем, что она принадлежит нашему отрезку. В этой точке должно достигаться наименьшее значение нашей функции. Подставляем: Каково же наибольшее значение функции? Поскольку функция возрастает на отрезке [-1/2, 1], то своё наибольшее значение на этом отрезке она примет в правом конце - в точке 1. Значение трёхчлена в точке 1: Это наибольшее значение функции на заданном отрезке, а значит, и наибольшее значение исходной функции. Так что ответом будет отрезок [1.75, 4]
Привет!) Используй метод группировки, смотри вложения: