х₁= -√6 (≈ -2,5)
х₂=√6 (≈2,5)
Объяснение:
Координаты вершины параболы (0; -3), значит, х₀= 0, отсюда b=0; у₀= -3, отсюда с= -3.
Уравнение параболы у=ах²+bх+с.
Подставляем в уравнение известные значения х и у (координаты точки D(6; 15) и вычисляем а. Уже известно, что b=0, а с= -3:
15=а*6²+0*6-3
15=36а-3
-36а= -3-15
-36а= -18
а= -18/-36
а=0,5
Уравнение принимает вид: у=0,5х²-3
Решаем квадратное уравнение, находим корни, которые являются точками пересечения параболой оси Ох:
0,5х²-3=0
0,5х²=3
х²=6
х₁,₂= ±√6
х₁= -√6 (≈ -2,5)
х₂=√6 (≈2,5)
КС - биссектриса. Чтобы было удобно читать текст, обозначим
∠А=2α, ∠В=2β , ∠С=2ω ⇒ ∠ВАК=∠САК=α , ∠АВК=∠СВК=β ,
∠ВСК=∠АСК=ω .
ΔАВК: α+β+∠АКВ=α+β+146°=180° ⇒ α+β=180°-146°=34°
ΔВКС: α+ω+∠ВКС=180° }
ΔАКС: β+ω+∠АКС=180° }
Сложим два последних равенства:
α+β+2ω+∠ВКС+∠АКС=360°
34°+2ω=360°-(∠ВКС+∠АКС)
2ω=326°-(∠ВКС+∠АКС)
∠АКВ+∠ВКС+∠АКС=360° ⇒
∠ВКС+∠АКС=360°-∠АКВ=360°-146°=214°
2ω=326°-214°=112°
ω=56°
∠ВСК=56°