Продолжительность выполнения домашнего задания (в чесах) по результатам опроса 10 учащихся приведена в таблице: 2,5 1,3 2,4 3,2 0,7 3,5 1,9 3,2 3,9 3 а) представьте данные в виде интервальной таблицы частот с интервалом в 1 час b) найдите процент учащихся, которые выполняют домашнее задание более 2-х часов
Рациональным числом называется такое число,которое не представляется в виде бесконечной периодической дроби. А вот иррациональное - бесконечная периодическая дробь. Иначе говоря,корень должен быть "тяжело извлекаем" в случае иррационального числа. Вот,например случай 2)-рациональное,очевидно,это 13. Рассмотрим случай 4).Переведём подкоренное в неправильную дробь - 25\4,корень извлекается,будет 5\2,следовательно,число рациональное. В случае 3) степень чётная,поэтому при перемножении можно убедиться,что число будет рациональным(целым здесь) Из 1,6 корень не извлечём. Хочется 4 приплести,да не выйдет. Не так давно объясняла другому человеку случай 4). Послушайте,если вам на экзамене попадутся десятичные дроби под корнями и потребуется выбрать рациональное число,берите ТО,У КОТОРОГО ПОСЛЕ ЗАПЯТОЙ ЧЁТНОЕ КОЛИЧЕСТВО ЗНАКОВ. Здесь 1 запятая после запятой.Случай 1 вылетает.
Используя свойства числовых неравенств,исследуйте функцию на монотонность:y=x^2-3 y(x+dx)-y(x)=((x+dx)^2-3)-(x^2-3)=x^2+dx^2+2xdx-3-x^2+3=2xdx+dx^2 dx>0; 2x+dx>0 при x >0, dx - бесконечно малая. (-∞;0) - функция убывает (большему значению аргумента соответствует меньшее значение функции) (0;∞) - функция возрастает y=x^2+2x+1,x>-1 (x+dx)^2+2(x+dx)+1-x^2-2x-1=x^2+dx^2+2xdx+2x+2xdx+1-x^2-2x-1= =dx(dx+2x+2) dx>0; 2x+2>0 при x>-1 dx+2x+2>0 dx(dx+2x+2)>0 по определению функция возрастает на данном интервале Исследуйте функцию на ограниченность: y=-2x^2-6x+15 квадратичная функция, коэф-ент при х^2 отрицателен вершина параболы х=-b/2a=6/-4=-1,5 y(-1.5)=-2*2,25-6*(-1.5)+15=-4,5+24=19,5 функция ограничена сверху (-∞;19,5) Исследуйте функцию на четность: y=5-3x^3. y(-x)=5-3*(-x)^3=5+3x^3 функция не является ни четной ни нечетной
А вот иррациональное - бесконечная периодическая дробь.
Иначе говоря,корень должен быть "тяжело извлекаем" в случае иррационального числа.
Вот,например случай 2)-рациональное,очевидно,это 13.
Рассмотрим случай 4).Переведём подкоренное в неправильную дробь - 25\4,корень извлекается,будет 5\2,следовательно,число рациональное.
В случае 3) степень чётная,поэтому при перемножении можно убедиться,что число будет рациональным(целым здесь)
Из 1,6 корень не извлечём.
Хочется 4 приплести,да не выйдет.
Не так давно объясняла другому человеку случай 4).
Послушайте,если вам на экзамене попадутся десятичные дроби под корнями и потребуется выбрать рациональное число,берите ТО,У КОТОРОГО ПОСЛЕ ЗАПЯТОЙ ЧЁТНОЕ КОЛИЧЕСТВО ЗНАКОВ.
Здесь 1 запятая после запятой.Случай 1 вылетает.