пусть собственная скорость катера будет = х км/ч, а скорость течения реки = у км/ч
значит скорость катера по течению реки составит: (х+у) км/ч, а против течения (х-у) км/ч
за 1 час по течению катер проплыл 18 км => 1*(x+y) = 18
против течению катер плыл такое же рассстояние, но за 1,5 часа (2,5 - 1) ,т.е. 1,5(х-у) = 18
объединим полученные уравнение в систему и решим их
{ 1*(x+y) = 18
{1,5(х-у) = 18
***
{х = 18 - у
{ 27 - 3у = 18
***
{ у = 3
{ х = 15
скорость течения реки 3 км/ч, а собственная скорость катера 15 км/ч
1) f(x) =x⁴ + 4·sin²x·cos²x - чётная функция
2) f(x) =x⁴ + 4·sin²x·cos²x - нечётная функция
Объяснение:
Определение. Функция f(x), x∈X, называется чётной, если для любого значения x из множества X выполняется равенство: f(–x) = f(x).
Определение. Функция f(x), x∈X, называется нечётной, если для любого значения x из множества X выполняется равенство: f(–x) =–f(x).
Известно, что функция:
sinx – нечётная, cosx - чётная, tgx – нечётная, ctgx – нечётная.
Решение.
1) Функция f(x) =x⁴ + 4·sin²x·cos²x определена при всех x∈R. Проверим по определению при x∈R:
f(–x) = (–x)⁴ +4·sin²(–x)·cos²(–x) = x⁴ +4·(–sinx)²·cos²x =
= x⁴ +4·sin²x·cos²x = f(x), то есть f(–x) = f(x) и функция – чётная;
2) Функция f(x) = (tgx – ctgx)/cosx определена при всех x∈X=R\{πn, π/2+πk, n∈Z, k∈Z}. Проверим по определению при x∈X:
f(–x) = (tg(–x) – ctg(–x))/cos(–x) = (–tgx –(–ctgx))/cosx =
= –(tgx – ctgx)/cosx = –f(x), то есть f(–x) = –f(x) и функция – нечётная.
1)y=(1/7)^x-2. ( - 2 до + бесконечности)
2) y= 7^|x|. (1 до + бесконечности)
Объяснение:
По графику посмотреть