Объяснение:
Докажем тождество:
(a + b)² - (a - b)² = 4 * a * b;
Раскроем скобки, применяя формулы сокращенного умножения.
a² + 2 * a * b + b² - (a² - 2 * a * b + b²) = 4 * a * b;
a² + 2 * a * b + b² - a² + 2 * a * b - b² = 4 * a * b;
Приведем подобные значения и упростим выражение.
2 * a * b + b² + 2 * a * b - b² = 4 * a * b;
2 * a * b + 2 * a * b = 4 * a * b;
В левой части тождества, вынесем общий множитель за скобки и вычислим значение выражения в скобках.
a * b * (2 + 2) = 4 * a * b;
4 * a * b = 4 * a * b;
Отсюда видим, что тождество верно.
Задание 1. Правописание наречий объяснить графически (обозначьте
суффиксы и приставки наречий). Объяснить правописание наречия.
Определить его разряд. Налев..., Когда (нибудь), Свеж..., Сгоряч...
Задание 2. Образуйте степени сравнения наречий. Наречие сравнительная. Составная сравнительная, превосходная степень: холодно,
мало, полезно.
Задание 3. Вставьте подходящие по смыслу наречия или прилагательные в
сравнительной степени. Сегодня день.. Девочка оделась.. Вторая работа
написана..
Объяснение:
Задание 1. Правописание наречий объяснить графически (обозначьте
суффиксы и приставки наречий). Объяснить правописание наречия.
Определить его разряд. Налев..., Когда (нибудь), Свеж..., Сгоряч...
Задание 2. Образуйте степени сравнения наречий. Наречие сравнительная. Составная сравнительная, превосходная степень: холодно,
мало, полезно.
Задание 3. Вставьте подходящие по смыслу наречия или прилагательные в
сравнительной степени. Сегодня день.. Девочка оделась.. Вторая работа
написана..
Логически, числа 10 и 13
13^2 - 10^2 = 169 - 100 = 69
13 - 10 = 3.