Пусть x- скорость лодки в стоячей воде y- cкорость течения реки Тогда, x+y -скорость лодки по течению x-y - скорость лодки против течения Тогда, 16/x+y(ч)время за которое проплывает лодка 16 км по течению 16/x-y(ч) 16 км против течения А по условию по течению лодка проплывает на 6 часов быстрее чем против значит можно составить уравнение: 16/x-y -16/x+y =6 Также по условию известно ,что скорость лодки на 2 км больше скорости течения реки Состав им второе уравнение: x-y=2 Пешим полученную систему уравнений : Сперва упрастим первое уравнение избавившись от знаменателя ,получим : 32y=6x^2-6y^2 Затем выразим x из второго уравнения ,получим x=y+2 и подставим в первое: 32y=6*(2+y)^2-6y 32y=24+24y+6y^2-6y^2 8y=24 y=3 X=3+2 X=5 ответ :скорость лодки 5 км/ч скорость реки 3км/ч
y=12⋅cos(x−π3)
Используем вид записи acos(bx−c)+d
для поиска переменных, используемых для вычисления амплитуды, периода, сдвига по фазе и вертикального сдвига.
a=12
b=1
c=π3
d=0
Найдем амплитуду |a|
.
Амплитуда: 12
Определим период при формулы 2π|b|
.
Нажмите, чтобы увидеть больше шагов...
Период: 2π
Найдем сдвиг периода при формулы cb
.
Нажмите, чтобы увидеть больше шагов...
Фазовый сдвиг: π3
Найдем вертикальное смещение d
.
Вертикальный сдвиг: 0
Перечислим свойства тригонометрической функции.
Амплитуда: 12
Период: 2π
Фазовый сдвиг: π3
(на π3
вправо)
Вертикальный сдвиг: 0
Выберем несколько точек для нанесения на график.
Нажмите, чтобы увидеть больше шагов...
xf(x)π3125π604π3−1211π607π312
Тригонометрическую функцию можно изобразить на графике, опираясь на амплитуду, период, фазовый сдвиг, вертикальный сдвиг и точки.
Амплитуда: 12
Период: 2π
Фазовый сдвиг: π3
(на π3
вправо)
Вертикальный сдвиг: 0
xf(x)π3125π604π3−1211π607π312
Объяснение: