Пусть возраст ильи равен х, тогда григорию 1,5х, а николаю 4+1,5х зная что вместе им 36 лет составим уравнение х+1,5х+4+1,5х=36 4х=32 х=8 8лет - илье 8*1,5=12 - григорию 12+4=16 - николаю
Формула квадратичной функции — формула вида y=ax²+bх+c Пересечение графика с осью абсцисс (т.е. с горизонтальной) — это корни уравнения ax²+bx+c=0 Корни уравнения в данном случае — это 5 и (-1) По теореме Виета в уравнении ax²+bx+c=0: с=5*(-1)=-5, -b=5-1=4, т.е. b=-4 Экстремум квадратичной функции — это вершина параболы. Вершина параболы находится по формуле ув.=(4ac-b²)/(4a), где ув. — координата вершины по игрику. Нам известны yв., в и с. Cоставим уравнение. -9=(4*a*(-5)-16)/(4a) … a=1 ответ: y=x²-4x-5.
1) Показательная функция с основанием 6>1 монотонно возрастает. Большему значению функции соответствует большее значение аргумента: х²+2х>3 или х²+2х-3>0 или (х+3)(х-1)>0 ---------------(-3)--------------(1)---------------------- \\\\\\\\\\\\\\\\\\\\\ //////////////////// ответ. (-∞;-3)U(1;+∞) 2) Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны: x-2=1/2 ⇒x=2,5 ответ. 2,5 3) 25=5² Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны: х²-2х-1=2 х²-2х-3=0 (х+1)(х-2)=0 х=-1 или х=2 ответ. -1; 2 4) Замена переменной t²-5t+4=0 D=25-16=9 t=1 или t=4 ⇒ x=0 ⇒ x=2 ответ. 0; 2 5)Замена переменной t²-6t+5=0 D=36-20=16 t=1 или t=5 ⇒ x=0 ⇒ x=1 ответ. 0; 1
Григорий- 1,5х
Илья- х
всего 36 лет.имеем уравнение:
х+1,5х+1,5х+4=36
1,5х+1,5х+х=36-4
4х=32
х=8 лет илье