Область определения - это множество всех таких значений аргумента х, при которых функция определена, Т.е. выражение, которым задается функция при всех таких х имеет смысл. Например, функция совершенно очевидно , что выражение 5x - 1 имеет смысл при любых значениях х, поэтому у неё область определения - это множество всех действительных чисел: D(f) = R. Функция т.к. выражение имеет смысл только при х≥0, то область определения этой функции - это множество всех неотрицательных чисел: D(f) = [ 0; + oo )
Множество значений функции - это просто множество всех значений, которые принимает данная функция. Множество значений - все действительные числа: Е(f) = R Множество значений - это также множество всех неотрицательных чисел: Е(f) = [ 0; + oo )
2) (2a-3b)^2-(3a+2b)^2=
4a^2-12ab+9b^2-9a^2-12ab-4b^2=
-5a^2+5b^2-24ab
3) (2x-3y)^2+(4x+2y)^2=
4x^2-12xy+9y^2+16x^2+16xy+4y^2=
20x^2+13y^2+4xy
4) 3x(5+x)^2-x(3x-6)^2=
75x+30x^2+3x^3-9x^3+36x^2-36x=
-6x^3+66x^2+39x
5) 0,6(ab-1)^2+1,4(ab+2)^2=
0,6a^2b^2-1,2ab-0.6+1,4a^2b^2+5,6ab+5,6=2a^2b^2+4,4ab+4,4
6) (x-2)^2+(x-1)(x+1)=
x^2-4x-4+x^2-1= -4x-5
7) (3a-2b)(3a+2b)-(a+3b)^2=
9a^2-4b^2-a^2-6ab-9b^2=
8a^2-13b^2-6ab
8) (y-4)(y+3)+(y+1)^2-(7-y)(7+y)=
y^2+3y-4y-12+y^2+2y+1-49+y^2=3y^2+y-60