Оба неравенства приводятся к каноническому виду (x - a)^2 + (y - b)^2 <= r^2, решение которого - внутренность (с границей) круга с центром в точке (a, b) и радиусом r.
Решение системы - все точки, которые одновременно принадлежат обоим кругам.
Расстояние между центрами кругов равно √((4 + 2)^2 + (7 + 1)^2) = 10 и равно сумме радиусов, поэтому круги касаются и искомое множество состоит из одной точки - точки касания окружностей, ограничивающих круги.
Кроме того, точка касания должна лежать на прямой, соединяющей центры. Угловой коэффициент этой прямой (7 - (-1))/(4 - (-2)) = 8/6 = 4/3, поэтому уравнение имеет вид y - 7 = 4/3 (x - 4), или y = (4x + 5)/3.
Подставляем y из второго уравнения в первое, получаем 3x + 4(4x + 5)/3 = 10 9x + 16x + 20 = 30 25x = 10 x = 0.4
я тоже заберу :>
Объяснение:
кхкхкхк