ответ:
разделим на 2 каждый член уравнения
\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cos x =\frac{\sqrt{2}}{2}
2
3
sinx+
2
1
cosx=
2
2
\begin{lgathered}\frac{\sqrt{3}}{2}=cos{\frac{\pi}{6}}\\ \frac{1}{2}=sin{\frac{\pi}{6}}\\ sin(x+\frac{\pi}{6})=\frac{\sqrt{2}}{2}\\ x+\frac{\pi}{6} = \frac{\pi}{4}+2\pi n\\ x= -\frac{\pi}{6} + \frac{\pi}{4}+2\pi n\\ x = \frac{\pi}{12}+2\pi n\\ \\ x+\frac{\pi}{6} = \pi-\frac{\pi}{4}+2\pi n\\ x+\frac{\pi}{6} = \frac{3\pi}{4}+2\pi n\\ x=-\frac{\pi}{6} + \frac{3\pi}{4}+2\pi n\\ x = \frac{7\pi}{12}+2\pi {lgathered}
2
3
=cos
6
π
2
1
=sin
6
π
sin(x+
6
π
)=
2
2
x+
6
π
=
4
π
+2πn
x=−
6
π
+
4
π
+2πn
x=
12
π
+2πn
x+
6
π
=π−
4
π
+2πn
x+
6
π
=
4
3π
+2πn
x=−
6
π
+
4
3π
+2πn
x=
12
7π
+2πn
1. Линейные уравнения с двумя переменными – это уравнение вида ax+by+c=0, где x, y - переменные, a, b,c – некоторые числа.
2. Нет.
3. x - y = 8
x = 8 + y
y = x - 8
4. 2x + y = - 3
x + y/2 = - 1.5
- 2 + 0.5 = -1.5
=> Да, данная пара чисел является решением уравнения.
5. 6x - y = 12
-y = 12 - 6x
y = 6x - 12
6. Решением системы двух линейных уравнений с двумя неизвестными называют пару чисел (x,y) такую, что если подставить эти числа в уравнения системы, то каждое из уравнений системы обращается в верное равенство
7. { 5x + 7 = y - 7
{ -5x - 7 = - y + 7
8. Методом сложения.
2x-3y=8 |*5
7x-5y=-5 |*-3
10x-15y=40
+
-21x+15y=15
-11x+ 0 =55
-11x=55
x=55/-11
x=-5
2*(-5)-3у=8
-10 - 3у=8
-3у = 18
у= -6
ответ (-5 ; -6)