Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
S V t 1 машина 216 км х км/ч 216/х час 2 машина 252 км у км/х 252/у час 216/х - 252/у = 1 216/х + 252/у = 4 1/3 Решаем эту систему. Обозначим 216/х = t, 252/у = z наша система: t - z = 1 t + z = 13/3 сложим: 2t = 16/3 t = 8/3 t - z = 1 8/3 -z =1 z = 8/3 -1 z = 5/3 Возвращаемся к нашей подстановке: а) 216/х = 8/3 ⇒ х = 216·3: 8 = 63,5(км/ч) - V1 б) 252/у = 5/3 ⇒ у = 252·3:5= 153,2(км/ч) - V2
Я не знаю дай номерок я напишу ответик