В решении.
Объяснение:
5) Упростить:
a) (а² - 4)/9b : (a - 2)/18b² =
= ((a - 2)(a + 2))/9b : (a - 2)/18b² =
= ((a - 2)(a + 2)*18b²)/(9b*(a - 2)) =
сократить (разделить) 9b и 18b² на 9b; (a - 2) и (a - 2) на (a - 2);
= b(a + 2);
b) (m² - n²)/14a : (m - n)/56a² =
= ((m - n)(m + n))/14a : (m - n)/56a² =
= ((m - n)(m + n)*56a²)/(14a*(m - n)) =
сократить (разделить) 56a² и 14a на 14а; (m - n) и (m - n) на (m - n);
= 4а(m + n).
6) Решить уравнение:
а) (х + 7)/(х - 2) = 10
х + 7 = 10(х - 2)
х + 7 = 10х - 20
х - 10х = -20 - 7
-9х = -27
х = -27/-9
х = 3.
b) (х - 8)/(х + 1) = -2
х - 8 = -2(х + 1)
х - 8 = -2х - 2
х + 2х = -2 + 8
3х = 6
х = 2.
В решении.
Объяснение:
1) Решить систему уравнений:
1/х + 1/у = 3/4
1/х - 1/у = 1/4
Сложить уравнения:
1/х + 1/х + 1/у - 1/у = 3/4 + 1/4
2/х = 1
х = 2;
Подставить значение х в любое из уравнений и вычислить у:
1/2 + 1/у = 3/4
2у + 4 = 3у
2у - 3у = -4
-у = -4
у = 4.
Решение системы уравнений (2; 4).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
2) Решить систему уравнений:
1 + х/(1 - х) =у/(1 - х²)
(х - 5)/(3 - у) = 1/2
Упростить первое уравнение:
(1 - х²) = (1 - х)(1 + х)
Умножить уравнение (все части) на это выражение, чтобы избавиться от дроби:
(1 - х)(1 + х) + х*(1 + х) = у
1 - х² + х + х² = у
1 + х = у;
Упростить второе уравнение:
(х - 5)/(3 - у) = 1/2
Умножить уравнение (все части) на 2(3 - у), чтобы избавиться от дроби:
2*(х - 5) = 3 - у
2х - 10 = 3 - у
2х + у = 13;
Получили упрощенную систему уравнений:
1 + х = у;
2х + у = 13;
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = у - 1
2(у - 1) + у = 13
2у - 2 + у = 13
3у = 15
у = 5;
х = у - 1
х = 4.
Решение системы уравнений (4; 5).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
3) Решить систему уравнений:
5/х + 2/у = 2
10/х - 6/у = -1
Умножить первое уравнение на 3, чтобы решить систему методом сложения:
15/х + 6/у = 6
10/х - 6/у = -1
Сложить уравнения:
15/х + 10/х + 6/у - 6/у = 6 - 1
25/х = 5
5х = 25
х = 5;
Подставить значение х в любое из уравнений и вычислить у:
5/5 + 2/у = 2
1 + 2/у = 2
Умножить уравнение на у, чтобы избавиться от дроби:
у + 2 = 2у
у - 2у = -2
-у = -2
у = 2.
Решение системы уравнений (5; 2).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
4) Решить систему уравнений:
3у/(9 - х²) + х/(х - 3) = 1
(5 - у)/(х - 5) = 2
Упростить первое уравнение:
(9 - х²) = (3 - х)(3 + х);
+ х/(х - 3) = -х(3 - х);
Получили:
3у/(3 - х)(3 + х) - х/(х - 3) = 1
Умножить уравнение (все части) на (3 - х)(3 + х), чтобы избавиться от дроби:
3у - х(3 + х) = (3 - х)(3 + х)
3у - 3х - х² = 9 - х²
Привести подобные члены:
3у - 3х - х² + х² = 9
3у - 3х = 9
Разделить уравнение на 3 для упрощения:
у - х = 3;
Упростить второе уравнение:
(5 - у)/(х - 5) = 2
Умножить уравнение (все части) на (х - 5),чтобы избавиться от дроби:
5 - у = 2(х - 5)
5 - у = 2х -10
Привести подобные члены:
-у - 2х = -15;
Получили упрощённую систему уравнений:
у - х = 3;
-у - 2х = -15;
Сложить уравнения:
у - у - х - 2х = 3 - 15
-3х = -12
х = -12/-3
х = 4;
Подставить значение х в любое из уравнений и вычислить у:
у - х = 3;
у = 3 + 4
у = 7.
Решение системы уравнений (4; 7).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
який предмет і классс