1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
Объяснение:
Обозначим за Х количество мест в ряду в 1-м зале
Тогда (Х+10) - количество мест в ряду во 2-м зале
420/Х - количество рядов в 1-м зале
480/(Х+10) - количество рядов во 2-м зале
420/Х-480/(Х+10)=5
приводим левую часть уравнения к общему знаменателю и складываем:
(420Х+4200-480Х)/Х(Х+10)=5
(4200-60Х)/(Х²+10Х)=5
делим обе части уравнения на 5:
(840-12Х)/(Х²+10Х)=1, или имеем право записать как:
840-12Х=Х²+10Х
Х²+22Х-840=0
Решая полученное квадратное уравнение, находим, что:
Х₁=20
Х₂=-42 данный корень не удовлетворяет условию задачи, поскольку количество мест в ряду не может быть отрицательным.
20 мест в ряду в 1-м зале
30 мест в ряду во 2-м зале (на 10 мест больше, чем в ряду первого зала)
21 ряд в 1-м зале
16 рядов во 2-м зале (на 5 рядов меньше, чем в первом зале