М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
АБН2014
АБН2014
17.08.2021 10:06 •  Алгебра

Раскройте скобки и выражение: а(во 2 степени)(а+3)-2а(а-3) =

👇
Ответ:
cadatik04
cadatik04
17.08.2021
А^2(а+3)-2а(а-3)=а^3+3а^2-2а^2+6а=а^3+а^2-6а

^-в какой-либо степени
4,4(46 оценок)
Открыть все ответы
Ответ:

как найти точки пересечения графика функции с осями координат?

с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

примеры.

1) найти точки пересечения графика линейной функции y=kx+b с осями координат.

решение:

в точке пересечения графика функции с осью ox y=0:

kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

в точке пересечения с осью oy x=0:

y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).

y=2∙0-10=-10. с oy график пересекается в точке (0; -10).

2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

решение:

в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.

в зависимости от дискриминанта, парабола   пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.

в точке пересечения графика с осью oy x=0.

y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

4,5(69 оценок)
Ответ:
А) на первом месте мы можем использовать 2 цифры, так как 0 на первом месте нельзя поставить, на втором - 3 цифры(с учетом цифры 0), на третьем месте - 3 способами. по правилу произведения  всего таких чисел 2*3*3 = 18. б) на первом месте можно взять 2 способами, на второе место - 2 способами, а на третье место - 1 способом. по правилу произведения, таких всего чисел - 2*2*1 = 4 в) на первые три места можно использовать любую цифры из 4. т.е. всего таких чисел будет 4³ = 64 г) на первое место можно выбрать 4 способами, на второе место - 3 способами, т.к. одну цифры мы уже используем, на третье месте - оставшиеся из 2. по правилу произведения:   4*3*2 = 24
4,4(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ