Y = 5*x-sin(2*x) 1. Находим интервалы возрастания и убывания. Первая производная равна:. f'(x) = -2cos(2x)+5 Находим нули функции. Для этого приравниваем производную к нулю -2cos(2x)+5 = 0 Для данного уравнения корней нет. 2. Находим интервалы выпуклости и вогнутости функции. Вторая производная равна: f''(x) = 4sin(2x) Находим корни уравнения. Для этого полученную функцию приравняем к нулю. 4sin(2x) = 0 Откуда точки перегиба: x1 = 0 На интервале (-∞ ;0) f''(x) < 0, функция выпукла На интервале (0; +∞) f''(x) > 0, функция вогнута
Y = 5*x-sin(2*x) 1. Находим интервалы возрастания и убывания. Первая производная равна:. f'(x) = -2cos(2x)+5 Находим нули функции. Для этого приравниваем производную к нулю -2cos(2x)+5 = 0 Для данного уравнения корней нет. 2. Находим интервалы выпуклости и вогнутости функции. Вторая производная равна: f''(x) = 4sin(2x) Находим корни уравнения. Для этого полученную функцию приравняем к нулю. 4sin(2x) = 0 Откуда точки перегиба: x1 = 0 На интервале (-∞ ;0) f''(x) < 0, функция выпукла На интервале (0; +∞) f''(x) > 0, функция вогнута
0.1
Объяснение:
b₁ = 0.1
q = -1
Т. к. сумму только 3-х надо найти нам даже формула не потребуется:
b₂ = b₁*q = -0.1
b₃ = b₂*q = 0.1
S₃ = 0.1 - 0.1 + 0.1 = 0.1