У меня получилось 4 таких числа - 1236, 1248, 1296 и 1326. Это навскидку, может и еще есть. Очевидно, первая цифра 1. Если все цифры различны, то вторая 2 или 3. Если вторая цифра 2, то третья не меньше 3, а последняя четная. Если третья 3, то число делится на 2 и 3, то есть на 6. Последняя 6. 1236 делится на 2,3 и 6. Если третья 4, то последняя 8. 1248 делится на 2, 4 и 8. Третья не может быть 5,6,7,и 8, по разным причинам. Если третья 9, то последняя 6, 1296 делится на 2, 9 и 6. Если вторая 3, то получается 1326 - четное и делится на 6.
Пусть a, b, c - эти числа. Тогда по свойству геометрической прогрессии: b² = a·c По свойству арифметической прогрессии: 5b/3 = (a + c)/2 b = 3(a + c)/10 b² = 9(a² + 2ac + c²)/100 b² = ac
9(a² + 2ac + c²)/100 = ac 9a² - 82ac + 9c² = 0 разделим на а² 9(c/a)² - 82c/a + 1 = 0 c/a = t 9t² - 82t + 1 = 0 D/4 = 41² - 9·9 = 1681 - 81 = 1600 t = (41+ 40)/9 = 9 t = (41 - 40)/9 = 1/9 c/a = q² q² = 9 или q² = 1/9 q = 3 или -3 q = 1/3 или -1/3 Так как прогрессия возрастающая, подходит одно значение 3
1)
Давайте упростим шаг за шагом.
81− (c − d)^2
Распространять:
= 81 + −c^2 + 2cd + −d^2
ответь:
= −c^2 + 2cd − d^2 + 81
2)
Давайте упростим шаг за шагом.
м^2− (м + п)^2
Распространять:
= m^2 + −m^2 + −2mn + −n^2
Объедините похожие термины:
= m^2 + −m^2 + −2mn + −n^2
= (m^2 + −m^2) + (- 2mn) + (- n^2)
= −2mn + −n^2
ответь:
= −2mn − n^2