Пусть х кубометров грунта в час может вырыть первый экскаватор, тогда второй экскаватор роет у кубометров в час. За 6 часов совместной работы 6х+6у они вырыли 330 кубометров грунта: 6х+6у=330 (1) Когда же один работал 7 часов (7х), а другой 5 часов (5у), было вырыто 325 кубометров грунта: 7х+5у=325 (2)
Составим и решим систему уравнений (методом сложения):
Умножим первое уравнение на -1,2
=(-5x+7x) + (-5у+5у)=-275+325 2х=50 х=50÷2=25 кубометров грунта в час вырывает первый экскаватор.
Подставим числовое значение х в одно из уравнений: 6х+6у=330 6×25+6у=330 6у=330-150 6у=180 у=180÷6 у=30 кубометров грунта в час вырывает второй экскаватор. ответ: первый экскаватор вырывает 25 кубометров грунта в час, а второй - 30 кубометров грунта в час.
Пусть длины катетов равны A и B. Тогда можно составить систему A^2 + B^2 = 37^2 (A*B) / 2 = 210 Из второго уравнения получаем, что A*B = 420. Упростим первое уравнение: A^2 + B^2 = 1369 A^2 + B^2 + 2*A*B - 2*A*B = 1369 (A+B) ^ 2 - 2*A*B = 1369. Подставляем AB: (A+B) ^ 2 - 2*420 = 1369 (A+B) ^ 2 - 840 = 1369 (A+B) ^ 2 = 2209 A+B = 47 А затем как-то (ну я подбором) находим два числа, которые в произведении дают 420, а в сумме 47. Это числа 12 и 35 ответ: 12 и 35
Насчёт подбора: можно составить систему: A+B = 47 A*B = 420 Из первого выражаем A: A = 47 - B. Теперь подставляем A во второе уравнение: (47 - B) * B = 420 -B^2 + 47*B - 420 = 0 B^2 - 47*B + 420 = 0 D=b^2 - 4*a*c = 2209 - 4*420 = 2209 - 1680 = 529 = 23^2 B1 = (47+23) / 2 = 35; B2 = (47-23) / 2 = 12
ответ на картинке
Объяснение: