 
                                                 
                                                Упрощение
(4x 2 + -9) + -2 (2x + -3) + x (2x + -3) = 0
Измените порядок условий:
(-9 + 4x 2 ) + -2 (2x + -3) + x (2x + -3) = 0
Избавиться от скобок, заключающих (-9 + 4x 2 )
-9 + 4x 2 + -2 (2x + -3) + x (2x + -3) = 0
Измените порядок условий:
-9 + 4x 2 + -2 (-3 + 2x) + x (2x + -3) = 0
-9 + 4x 2 + (-3 * -2 + 2x * -2) + x (2x + -3) = 0
-9 + 4x 2 + (6 + -4x) + x (2x + -3) = 0
Измените порядок условий:
-9 + 4x 2 + 6 + -4x + x (-3 + 2x) = 0
-9 + 4x 2 + 6 + -4x + (-3 * x + 2x * x) = 0
-9 + 4x 2 + 6 + -4x + (-3x + 2x 2 ) = 0
Измените порядок условий:
-9 + 6 + -4x + -3x + 4x 2 + 2x 2 = 0
Объедините похожие термины: -9 + 6 = -3
-3 + -4x + -3x + 4x 2 + 2x 2 = 0
Объедините похожие термины: -4x + -3x = -7x
-3 + -7x + 4x 2 + 2x 2 = 0
Зерноуборочный подобные термины: 4x 2 + 2x 2 = 6x 2
-3 + -7x + 6x 2 = 0
Решение
-3 + -7x + 6x 2 = 0
Решение для переменной 'x'.
Разложите на множители трехчлен.
(-1 + -3x) (3 + -2x) = 0
Подзадача 1
Установите коэффициент '(-1 + -3x)' равным нулю и попытайтесь решить:
Упрощение
-1 + -3x = 0
Решение
-1 + -3x = 0
Переместите все термины, содержащие x, влево, все остальные термины - вправо.
Добавьте «1» к каждой стороне уравнения.
-1 + 1 + -3x = 0 + 1
Объедините похожие термины: -1 + 1 = 0
0 + -3x = 0 + 1
-3x = 0 + 1
Объедините похожие термины: 0 + 1 = 1
-3x = 1
Разделите каждую сторону на «-3».
х = -0,3333333333
Упрощение
х = -0,3333333333
Подзадача 2
Установите множитель '(3 + -2x)' равным нулю и попытайтесь решить:
Упрощение
3 + -2x = 0
Решение
3 + -2x = 0
Переместите все термины, содержащие x, влево, все остальные термины - вправо.
Добавьте «-3» к каждой стороне уравнения.
3 + -3 + -2x = 0 + -3
Объедините похожие термины: 3 + -3 = 0
0 + -2x = 0 + -3
-2x = 0 + -3
Объедините похожие термины: 0 + -3 = -3
-2x = -3
Разделите каждую сторону на «-2».
х = 1,5
Упрощение
х = 1,5
Решение
х = {-0,3333333333, 1,5}
 
                                                По определению, 
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение 
2) 

А значит, если взять ![N=\left[\dfrac{|a|}{\varepsilon}\right] +1](/tpl/images/3820/0626/0d89e.png) (*),
 (*),  . И правда:
. И правда: 
(*) Очевидно, что для любого допустимого значения  выражение
 выражение ![\left[\dfrac{|a|}{\varepsilon}\right] +1](/tpl/images/3820/0626/ae843.png) определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)  

 
А значит, если взять ![N=\left[\dfrac{3}{\varepsilon}\right] +1](/tpl/images/3820/0626/a4ca4.png) (**),
 (**),  . И правда:
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения  выражение
 выражение ![\left[\dfrac{3}{\varepsilon}\right] +1](/tpl/images/3820/0626/698f8.png) определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда 
4)
 
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 
 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                
25 + (25/5)*2 = 25 + 10 = 35