Приклад:
Розв'язати систему рівнянь: {x−2y=3,5x+y=4.
1) З першого рівняння системи виражаємо змінну x через змінну y.
Отримуємо: x−2y=3,x=3+2y;
2) Підставимо отриманий вираз замість змінної x у друге рівняння системи:
5⋅x+y=4,5⋅(3+2y)+y=4;
3) Розв'яжемо утворене рівняння з однією змінною, знайдемо y:
5⋅(3+2y)+y=4,15+10y+y=4,10y+y=4−15,11y=−11,|:11y=−1¯¯¯¯¯¯¯¯¯¯¯.
4) Знайдемо відповідне значення змінної x, підставивши значення змінної y, у вираз знайдений на першому кроці:
x=3+2⋅y,x=3+2⋅(−1),x=3−2,x=1¯¯¯¯¯¯¯¯.
5) Відповідь: (1;−1) .
Объяснение:
это решить линейные уравнения без черчежей
Объяснение: 1) ∫₄⁹√xdx =(2/3)·x√x |₄⁹= (2/3)· (9√9 = 4√4)=(2/3)·(27-8)= 2·19/3=38/3
2) 1+ log₂(x+5) = log₂(3x-1) +log₂(x-1) , ОДЗ: х-1>0, x>1 ⇔ log₂2 +log₂(x+5) = log₂(3x-1) +log₂(x-1) ⇔ log₂ (2x+10) = log₂ (3x²-4x+1) ⇒ 2x+10= 3x²-4x+1 ⇒ 3x²-6x-9 =0⇒ x²-2x - 3=0, D= 4+12=16>0, ⇒x₁=(2+4)/2=3, x₂=(2-4)/2=-1 (не удовлетворяет ОДЗ уравнения). ответ: х=3 №3 tgα=y'(x₀), y'(x)=(x³)'=3x² ⇒ т.к. х₀ =0, то tgα=y'(x₀)=3·0²=0
2. = (4 - 5y)(4 + 5y) = - = 16 - 25