4 < a < 7 и 3 < b < 5
1) а + b может ограничиваться 4+3 = 7; 4 + 5 = 9; 7 + 3 = 10; 7 + 5 = 12;
самое маленькое число 7, самое большое 12, поэтому
7 < а + b < 12
2) a/b ограничивается 4/3 ≈ 1,33; 4/5 = 0,8; 7/3 ≈ 2,33; 7/5 = 1,4;
нижняя граница 0,8, верхняя граница 2,33, поэтому
4/5 < a/b < 7/3
3) 2a - 5b - ?
8 < 2a < 14 и 15 < 5b < 25
2a - 5b ограничивается 8/15 ≈ 0.53; 8/25 = 0,32; 14/15 ≈ 0.93; 14/25 = 0.56;
нижняя граница 0,32, верхняя граница 0.93, поэтому
8/25 < 2a - 5b < 14/15
4) 4b/9a - ?
36 < 9a < 63 и 12 < 4b < 20
4b/9a ограничивается 12/36 ≈ 0,33; 12/63 = 4/21 ≈ 0,19; 20/36 = 5/9≈ 0,55; 20/63 ≈ 0,32;
нижняя граница 0,19, верхняя граница 0.55, поэтому
4/21 < 4b/9a < 5/9
5) (0.6b - 0.2a)/(0.7a - 0.1b)
0.8 < 0.2a < 1.4 и 1.8 < 0.6b < 3
0.6b - 0.2a - ограничивается 1.8 - 0.8 = 1; 3 - 0,8 = 2,2; 1,8 - 1,4 = 0,4; 3 - 1,4 = 1,6
нижняя граница 0,4; верхняя граница 2,2
0.4 < 0.6b - 0.2a < 2.2
2.8 < 0.7a < 4.9 и 0.3 < 0.1b < 0.5
0.7a - 0.1b ограничивается 2,8 - 0,3 = 2,5; 2,8 - 0,5 = 2,3; 4,9 - 0,3 = 4,6; 4,9 - 0,5 = 4,4
2.3 < 0.7a - 0.1b < 4.6
Рассмотрим (0.6b - 0.2a)/(0.7a - 0.1b)
0.4 < 0.6b - 0.2a < 2.2
2.3 < 0.7a - 0.1b < 4.6
(0.6b - 0.2a)/(0.7a - 0.1b) ограничивается 0,4/2,3 = 4/23 ≈ 0,17; 0,4/4,6 = 2/23 ≈ 0,09; 2,2/2,3 = 22/23 ≈ 0,96; 2,2/4,6 = 11/23 ≈ 0,48, поэтому
2/23 < (0.6b - 0.2a)/(0.7a - 0.1b) < 22/23
0.4 < 0.6b - 0.2a < 2.2
1. АО = ОС по условию,
ВО = OD по условию,
∠АОВ = ∠COD как вертикальные, ⇒
ΔАОВ = ΔCOD по двум сторонам и углу между ними.
2. NK = KP по условию,
∠MNK = ∠EPK по условию,
∠MKN = ∠ЕКР как вертикальные, ⇒
ΔMKN = ΔЕКР по стороне и двум прилежащим к ней углам.
3. АВ = AD по условию,
∠ВАС = ∠DAC по условию,
АС - общая сторона для треугольников ВАС и DAC, ⇒
ΔВАС = ΔDAC по двум сторонам и углу между ними.
4. ВС = AD по условию,
∠CBD = ∠ADB по условию,
BD - общая сторона для треугольников CBD и ADB, ⇒
ΔCBD = ΔADB по двум сторонам и углу между ними.
5. ∠MDF = ∠EDF по условию,
∠MFD = ∠EFD по условию,
DF - общая сторона для треугольников MDF и EDF, ⇒
ΔMDF = ΔEDF по стороне и двум прилежащим к ней углам.
6.
а) ∠МАВ = ∠NBA по условию,
∠МВА = ∠NAB по условию,
АВ - общая сторона для треугольников МАВ и NBA, ⇒
ΔМАВ = ΔNBA по стороне и двум прилежащим к ней углам.
б) АМ = BN из равенства ΔМАВ = ΔNBA (см. п. а))
∠АМН = ∠ВNН из равенства ΔМАВ = ΔNBA,
∠МАН = ∠МАВ - ∠НАВ
∠NBH = ∠NBA - ∠HBA, а так как ∠МАВ = ∠NBA по условию и ∠НВА = ∠НAB по условию, то и
∠MAH = ∠NBH, ⇒
ΔMAH = ΔNBH по стороне и двум прилежащим к ней углам.
7. МК = PN по условию,
MN = PK по условию,
NK - общая сторона для треугольников MNK и PKN, ⇒
ΔMNK = ΔPKN по трем сторонам.
8. ∠ABD = ∠CDB по условию,
∠ADB = ∠CBD по условию,
BD - общая сторона для треугольников ABD и CDB , ⇒
ΔABD = ΔCDB по стороне и двум прилежащим к ней углам.
9. ∠САВ = ∠EFD по условию,
∠АВС = ∠EDF по условию,
АВ = AD + DB
FD = FB + DB, а так как AD = BF по условию, то и
АВ = FD, ⇒
ΔСАВ = ΔEFD по стороне и двум прилежащим к ней углам.
10.
а) АС = ВС по условию,
∠СВЕ = ∠CAD по условию,
угол при вершине С - общий для треугольников СВЕ и CAD, ⇒
ΔСВЕ = ΔCAD по стороне и двум прилежащим к ней углам.
б) ∠ADC = ∠BEC из равенства треугольников СВЕ и CAD, ⇒
∠BDF = ∠AEF как смежные с равными углами,
∠DBF = ∠EAF по условию,
BD = BC - DC
AE = AC - EC, а так как ВС = АС по условию, и DC = EC из равенства треугольников СВЕ и CAD, то и BD = AE, ⇒
ΔBDF = ΔAEF по стороне и двум прилежащим к ней углам.
11. КН = ЕН по условию,
FK = PE по условию,
∠FKH = ∠PEH как смежные с равными углами, ⇒
ΔFKH = ΔPEH по двум сторонам и углу между ними.
12. DE = CE по условию,
∠ADE = ∠BCE как смежные с равными углами,
∠AED = ∠BEC как вертикальные, ⇒
ΔAED = ΔBEC по стороне и двум прилежащим к ней углам.
Объяснение:
Фото
Объяснение: