М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Pylieva
Pylieva
11.09.2021 17:52 •  Алгебра

решить, желательно на листочке ​


решить, желательно на листочке ​

👇
Ответ:
ab198me
ab198me
11.09.2021

799:20

Объяснение:

Сначала нужно всё перевести в неправильные дроби, потом сократить некоторые числа, привести к общему знаменателю и получится ответ


решить, желательно на листочке ​
4,4(52 оценок)
Ответ:
12345671251
12345671251
11.09.2021
............................
Удачи!)
решить, желательно на листочке ​
4,6(88 оценок)
Открыть все ответы
Ответ:
Сонька2808
Сонька2808
11.09.2021

1) Выразим y из первого уравнения:

   y = 1 - ax

 Подставим y во второе уравнение:

   4x - 2(1 - ax) = a

   4x - 2 + 2ax = a

   2(2x-1) + a(2x-1) = 0

   (a+2)(2x-1) = 0

     При a = -2 уравнение всегда равно нулю, то есть верно. Поэтому при а = -2 имеется бесконечное количество решений.

 

2) Делаем тоже, что и в первом:

   y = (3-ax)/2

   

  8x+ a(3-ax)/2 = a+2

  8x + (3a - a^2 * x)/2 = a+2  | * 2

  16x + 3a - a^2 * x = 2a + 4

  -a^2 * x  + a + 16x - 4 = 0

    x(16 - a^2) + (a-4) = 0

    x(4-a)(4+a) - (4-a) = 0

    (4-a)(x(4+a) - 1) = 0

     (4-a)(4x + ax - 1) = 0      (1)

 Для того, чтобы а давало одно решение системе, необходимо, во-первых, чтобы а не было равно 4(тогда повторится история первого примера, будет бесконечно корней), а во-вторых, при любом а, отличном от четырёх и от минус четырёх, у уравнения (1) всегда будет один корень, потому что а - это простое число, (4-а) - тоже, а 4х + ах - 1 превращается в обычное линейное уравнение, которое имеет только  один корень. В случае, когда а = -4, то уравнение превращается вот во что: (4+4)(4х - 4х - 1) = 0

   8*(-1) = 0 , что неверно.

  Значит, значение параметра может быть любым числом, кроме 4 и -4. =) 

4,7(14 оценок)
Ответ:
ronnedtoby
ronnedtoby
11.09.2021
Найдите наибольшее значение функции
y = (x − 2)^2 (x − 4) + 2 на отрезке [1; 3].

Уточню: Есть понятие точки максимума и есть понятие наибольшего значения функции.
Чтобы найти Наибольшее значение функции на отрезке нужно 
1) проверить наличие точек экстремумов
2) определить из них точки максимума
3) Найти значение функции в точке максимума и на концах отрезка (при необходимости)

Решение:

\displaystyle y=(x-2)^2(x-4)+2\\\\y`=((x-2)^2)`(x-4)+(x-4)`(x-2)^2+0=\\\\=(2(x-2)*1)(x-4)+1(x-2)^2=(x-2)(2x-8+x-2)=\\\\=(x-2)(3x-10)\\\\y`=0\\\\(x-2)(3x-10)=0\\\\x=2; x=10/3

получили две точки экстремума. Проверим что это за точки

___+____ 2 _____-______ 10/3 ___+_____
 возр                убыв                         возр

Значит х=2 точка максимума, х=10/3 точка минимума

в отрезок от [1;3] попадет точка х=2 и это точка максимума

найдем значение функции в этой точке

\displaystyle y(2)=(2-2)^2(2-4)+2=2

Значит наибольшее значение на отрезке равно 2
4,8(32 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ