III. Викон 1. Визнач взаємне розміщення прямої та кола за наведеними даними, якщо г відстань від центра кола до прямої. радіус кола; п — а) r=7 см; n = 5 см; б) = 3,5 см; n = 4,5 см; в) = 0,5 см; П = 0,5 см. 3
Если x1 и x2 – корни квадратного уравнения a·x2+b·x+c=0, то сумма корней равна отношению коэффициентов b и a, взятому с противоположным знаком, а произведение корней равно отношению коэффициентов c и a, то есть, дано: х2+рх+ф=0 м и н некоторые числа м+н=-р м*н=ф док-ть: м и н корни квадратного уравнения док-во: х2+рх+ф=0 х2-(м+н) *х+м*н=0 х2-мх-нх+м*н=0 х (х-н) -м (х-н) =0 (х-м) (х-н) =0 х-м=0 х-н=0 х=м х=н чтд
54мин=54/60ч=9/10ч=0,9ч х-время быстрой группы на весь путь х+0,9-время медленной группы на весь путь 18/2=9км/ч- совместная скорость 18/х+18/(х+0,9)=9 18(х+0,9)+18х=9х(х+0,9) 18х+16,2+18х=9х²+8,1х 36х+16,2=9х²+8,1х 9х²+8,1х-36х-16,2=0 9х²-27,9х-16,2=0 разделим на 9 х²-3,1х-1,8=0 d = (-3.1)2 - 4·1·(-1.8) = 9.61 + 7.2 = 16.81х₁=( 3.1 - √16.81)/(2*1) = (3.1 - 4.1)/2 = -1/2 = -0.5- не подходитх₂=(3.1 +√16.81)/(2*1) = (3.1 + 4.1)/2 =7,2/2 = 3,6 18/3,6=180/36=20/4=5км/ч-скорость быстрой группы 9-5=4км/ч- скорость медленной группы
Объяснение:
а)Якщо вiдстань вiд центра кола до прямої менша за радіус, то коло i пряма перетинаються.
б) Якщо вiдстань вiд центра кола до прямої більша за радіус, то коло та пряма не перетинаються.
в) Якщо вiдстань вiд центра кола до прямої менша за радіус, то коло i пряма перетинаються,