√√Пусть длина трассы x м, стартуют они в точке А, а встречаются в В. 1-ое тело имеет скорость v1 (м/мин), 2-ое тело v2 < v1 (м/мин). В момент встречи оба тела вместе проехали весь круг, за время t = x/(v1+v2) (мин) При этом 1-ое тело на 100 м больше, чем 2-ое тело. v1*t = v2*t + 100 v1*x/(v1+v2) = v2*x/(v1+v2) + 100 Умножаем все на (v1+v2) v1*x = v2*x + 100(v1+v2) x(v1-v2) = 100(v1+v2) x = 100(v1+v2)/(v1-v2)
1-ое тело вернулось в точку А через 9 мин, то есть за 9 мин оно расстояние, которое до встречи ое тело за t мин. v1*9 = v2*t = v2*x/(v1+v2) 9v1(v1+v2) = v2*x А 2-ое тело вернулось в А через 16 мин, то есть за 16 мин оно расстояние, которое перед этим ое тело за t мин. v2*16 = v1*t = v1*x/(v1+v2) 16v2(v1+v2) = v1*x
Получили систему из 3 уравнений с 3 неизвестными. { x = 100(v1+v2)/(v1-v2) { 9v1(v1+v2) = v2*x { 16v2(v1+v2) = v1*x Подставляем 1 уравнение во 2 и 3 уравнения { 9v1(v1+v2) = v2*100(v1+v2)/(v1-v2) { 16v2(v1+v2) = v1*100(v1+v2)/(v1-v2) Сокращаем (v1+v2) { 9v1 = 100v2/(v1-v2) { 16v2 = 100v1/(v1-v2) Получаем { 0,09v1 = v2/(v1-v2) { 0,16v2 = v1/(v1-v2)
Найдем значения Х, которые обнуляют подмодульные выражения: 4x-10=0; x=2,5 2x-14=0; x=7 Нанесем эти точки на числовую ось:
2,57
Эти точки разбивают числовую прямую на три промежутка.Рассмотрим все три случая: 1)x<2,5 На этом промежутке оба подмодульных выражения отрицательны, поэтому модули раскроем со сменой знака: [-4x+10+2x-14]/ (x+3)(x-6) <=0 (-2x-4)/(x+3)(x-6) <=0 -2(x+2) / (x+3)(x-6) <=0 (x+2)/(x+3)(x-6) >=0
-__(-3)__+[-2]___-(6)+
С учетом промежутка получаем: x e (-3; 2]
2)2,5<=x<7 Первый модуль раскроем без смены знака, а второй - со сменой знака: [4x-10+2x-14]/(x+3)(x-6) <=0 (6x-24)/(x+3)(x-6)<=0 6(x-4)/(x+3)(x-6)<=0 (x-4)/(x+3)(x-6)<=0
(x²+8x+3)*(x²+8x+5)=63
x²+8x+4 = t
(t - 1)(t + 1) = 63
t² - 1 = 63
t² = 64
1. t = 8
x²+8x+4 = 8
x²+8x-4 = 0
D = 64 + 16 = 80
x₁₂ = (-8 +- √80)/2 = -4 +- 2√5
2. t = -8
x²+8x+4 = -8
x²+8x + 12 = 0
D = 64 - 48 = 16
x₁₂ = (-8 +- 4)/2 = -6 -2
ответ х = {-6, -2, -4 + 2√5, -4 - 2√5}