М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vipkakunina
vipkakunina
09.09.2021 22:08 •  Алгебра

Как удалить старое сохранение в карьере в фифе 21 и начать новое ​

👇
Открыть все ответы
Ответ:
maxzaytsev5120
maxzaytsev5120
09.09.2021

ответ:  S(n)= ((3a-1)*(4^n-1) +3n)/9

             S(5)= 58.5  (при  a=0.5)

Объяснение:

Можно решать в лоб и просто найти и сложить все 5 членов.

Используя рекуррентное соотношение: a(n+1)=4*a(n)-1, найдем все  все 5 членов:

a(1)=0.5

a(2)=4*0.5-1=1

a(3)=4*1-1=3

a(4)=4*3-1=11

a(5)=4*11-1=43

S(5)=0.5+1+3+11+43=58.5

Но  мы решим эту задачу в общем виде.

Cначало попробуем найти формулу n-го  члена этой последовательности.  

Используем рекуррентное соотношение :

a(n+1)=4*a(n)-1

Запишем первые 3 члена:

a(1)=a1

a(2)=4a1-1

a(3)=4*(4a1-1)-1=16*a1-4a-1=4^2*a1-4a1-1

Можно уже догадаться что формула n  члена имеет вид:

a(n)=a1*4^(n-1)-4^(n-2)-4^(n-3)-4^4 - 4^3 - 4^2- 4- 1

Докажем наше предположение методом математической индукции:

Вычислим значение для n=1 :

a(1)=a1*4^(1-1)=a1*4^0=a1 ( верно)

Предположим, что формула верна для n=k :

a(k)=a1*4^(k-1)-4^(k-2)-4^(k-3) - 4^2 - 4 - 1

Тогда покажем ее верность для n=k+1

То  есть необходимо доказать что:

a(k+1)=a1*4^k -4^(k-1)-4^(k-2)-4^2-4-1

Поскольку : a(k+1)=4*a(k)-1

a(k+1)=4*(a1*4^(k-1)-4^(k-2)-4^(k-3)-4^2- 4- 1 )-1=                                              =a1*4^k -4^(k-1)-4^(k-2)-4^3-4^2-4-1 - (верно)

Таким образом наше предположение доказано.

Заметим, что нашу формулу можно записать так:

a(n)=a1*4^(n-1) + (1+4+4^2+4^3+ 4^(n-1)+4^(n-2) )

В скобках видим сумму геометрической прогрессии в которой:

b1=1

q=4

Тогда выражение в скобках равно:

S'=(q^(n-1)-1)/(q-1) =(4^(n-1) -1)/(4-1)= (4^(n-1)-1)/3

a(n)= a1*4^(n-1)  - (4^(n-1)-1)/3= (3*a1*4^(n-1) -4^(n-1)+1)/3=

= (4^(n-1) *(3a1-1) +1)/3 = 4^(n-1)*(3a1-1)  +1/3

Теперь можно найти сумму n   членов:

S(n)= 1/3  * (3a1-1)*(1+4+4^2...+4^(n-1) ) +n*(1/3)

Cумма в скобках вновь геометрическая прогрессия:

S''= (4^n -1)/3

S(n)= (3a-1)*(4^n -1)/9  +n/3=  ((3a-1)*(4^n -1) +3n)/9

Таким образом формула сумму n-членов ряда заданного рекуррентным  соотношением:

a(n+1)=4*a(n)-1

Вычисляется по формуле:

S(n)= ((3a-1)*(4^n -1) +3n)/9

Осталось подставить в формулу начальные данные:

a1=0.5

n=5

3a-1=3*0.5-1=0.5

4^n-1=4^5 -1= 1024-1=1023

S(5)= (0.5 *1023 +15)/9= 58.5

ответ: S(5)= 58.5

P.S  как  видим ответ совпал .

4,7(45 оценок)
Ответ:
BlackStyle69
BlackStyle69
09.09.2021
Х-длина спуска
5-х-длина подъема

6мин=6/60=1/10=0,1ч
1+0,1=1,1ч-время на путь обратно

у-скорость на подъеме
у+2-скорость на спуске
Первое уравнение
х/(у+2)+(5-х)/у=1  умножим на у(у+2)
ху+(5-х)(у+2)=у(у+2)
ху+5у+10-ху-2х=у²+2у
5у+10-2х=у²+2у
2х=5у+10-у²-2у
2х=3у+10-у²
Второе уравнение
х/у+(5-х)/(у+2)=1,1  умножим на у(у+2)
х(у+2)+(5-х)у=1,1у(у+2)
ху+2х+5у-ху=1,1у²+2,2у
2х+5у=1,1у²+2,2у
2х=1,1у²+2,2у-5у
2х=1,1у²-2,8у

3у+10-у²=1,1у²-2,8у
-2,1у²+5,8у+10=0
2,1у²-5,8у-10=0

D = (-5.8)² - 4·(2.1)·(-10) = 33.64 + 84 = 117.64
у1≈-1,20 не подходит
у2≈3,96 км/ч-скорость на подъеме
3,96+2=5,96км/ч-скорость на спуске
4,7(43 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ