Объяснение:
5/8 и 4/9 . Общий знаменатель 8*9=72. Дополнительные множители 9 и 8 соответственно.
45/72 и 32/72.
***
11/24 и 101/180 . Разложим на множители 24= 2*2*2*3; 180=2*2*3*3*5
Общий знаменатель 180*2=360 (недостающий множитель из разложения числа 24). Дополнительные множители 15 и 2 соответственно. получаем
11*15/24*15 и 101*2/180*2.
165/360 и 202/360.
***
5/12 и 23/27. 12=2*2*3. 27=3*3*3. Общий знаменатель 27*4=108. дополнительные множители 108/12=9 и 108/27=4.
Получим: 5*9/12*9 , 23*4/27*4
45/108 и 92/108.
-3/8.
Объяснение:
1) x²-4ax+5a=0
Если х1 и х2 - корни уравнения, то по теореме Виета
х1 + х2 = 4а и х1•х2 = 5а.
2) Сумма квадратов двух корней уравнения
(х1)^2 + (х2)^2 =(х1 + х2)^2 - 2•х1•х2 = (4а)^2 - 2•5а = 16а^2 -10а.
По условию эта сумма равна 6, тогда
16а^2 -10а = 6
16а^2 -10а - 6 = 0
8а^2 - 5а - 3 = 0
D = 25 -4•8•(-3) = 25 + 96 = 121
a =(5±11):16
a1 = 1
a2 = -6:16 = -3/8
3) Проверим, что при найденных значениях уравнение имеет два различных действительных корня.
✓При а=1 уравнение примет вид x²-4x+5=0. Дискриминант отрицательный, уравнение корней не имеет.
✓При а= -3/8 уравнение примет вид
x^2 -4•(-3/8)x+5•(-3/8)=0
х^2 +3/2•х - 15/8 = 0
8х^2 + 12х - 15 = 0
D =144 + 4•8•15 = 144+480=624>0, уравнение имеет два различных корня
ответ: -3/8.
b3=b1*q2
2=b1*0,25
b1=8