Пусть х км/час - скорость мотоциклиста, у км/час -скорость велосипедиста. До встречи мотоциклист проехал 28х км, а велосипедист 28у км. После встречи оставшийся путь мотоциклист проехал за 28у/х минут, а велосипедист за 28х/у. Зная, что мотоциклист был в пути на 42 мин меньше составим уравнение: 28х/у-28у/х=42 Обозначим дробь х/у новой переменной: х/у=z Тогда уравнение примет вид: 28z-28/z=42 Приводим к общему знаменателю: 28z^2+42z-28=0 Решая квадратное уравнение получим корни: z1=-2 не подходит; z2=1/2. СЛедовательно, х/у=1/2. т.Е. скорость велосипедиста в 2 раза меньше скорости мотоциклиста. Отсюда имеем время движения велосипедиста из В в А равно 28+56=84минуты. ответ: 84
Чертим координатную плоскость отмечаем точку О, стрелками положительное направление: вправо и вверх, подписываем оси: вправо - ось х и вверх - ось у отмечаем единичные отрезки по каждой из осей в 1 клетку.
Отмечаем данную точку А(-3; 3) Чертим прямую х=-2, для этого отмечаем две точки, например В(-2; 2) и С(-2; 4) . Из точки А проводим перпендикуляр АН к прямой с угольника и продолжаем его дальше прямой; отмеряем на продолжении перпендикуляра расстояние, равное АН и ставим точку Д. Находим координаты точки Д. Получаем Д(-1; 3) - симметрична А относительно прямой х=-2
Как то решил,на фото.....