в) Преобразуем числитель. (1-cos²x+sin²x)/(x*tg3x)=2sin²x/(x*tg3x), подведем данную запись под первый замечательный предел. При икс, стремящемся к нулю, sinx ; tg3x эквивалентны х и 3х соответственно, а потому получим предел дроби 2*х*х/(х*3х) и он равен 2/3.
ответ 2/3
г) преобразуем (4-x)*(㏑(2-3х)-㏑(5-3х))=(4-x)*(㏑((2-3х)/(5-3х))=
(4-x)㏑((3х-2)/(3х-5))=(4-x)㏑((1+3/(3x-5))=㏑((1+3/(3x-5))^(4-x)
cвели решение ко второму замечательному пределу, возьмем сначала предел от (1+3/(3x-5))^(4-x), а затем логарифм от полученного предела.
представим (1+3/(3x-5))⁽⁴ ⁻ˣ⁾=(((1+(3/(3x-5)))⁽³ˣ ⁻⁵⁾/³))⁽³⁽⁽⁴⁻ˣ⁾/⁽³ ˣ⁻⁵)предел от этого выражения равен е⁻¹, а ㏑е⁻¹=-1*lnе=-1
ответ -1
а) (x - 3)(x - 7) - 2x(3x - 5) = x*x - 3*x - 7*x - 3(-7) - 2x*3x - 2x(-5) =
= x^2 - 10x + 21 - 6x^2 + 10x = -5x^2 + 21
б) 4a(a - 2) - (a - 4)^2 = 4a^2 - 8a - (a^2 - 8a + 16) =
= 4a^2 - 8a - a^2 + 8a - 16 = 3a^2 - 16
в) 2(m+1)^2 - 4m = 2(m^2+2m+1) - 4m = 2m^2 + 4m + 2 - 4m = 2m^2 + 2
2) а) Выносим х за скобки и раскладываем разность квадратов
x^3 - 9x = x(x^2 - 9) = x(x - 3)(x + 3)
б) Выносим -5 за скобки и получаем квадрат суммы
-5a^2 - 10ab - 5b^2 = -5(a^2 + 2ab + b^2) = -5(a + b)^2
3) Раскрываем скобки
(y^2 - 2y)^2 - y^2(y + 3)(y - 3) + 2y(2y^2 + 5) =
= y^4 - 4y^3 + 4y^2 - y^2(y^2 - 9) + 4y^3 + 10y =
= y^4 - 4y^3 + 4y^2 - y^4 + 9y^2 + 4y^3 + 10y = 13y^2 + 10y
4) а) Разность квадратов два раза
16x^4 - 81 = (4x^2 - 9)(4x^2 + 9) = (2x - 3)(2x + 3)(4x^2 + 9)
б) Разность квадратов
x^2 - x - y^2 - y = (x^2 - y^2) - (x + y) = (x-y)(x+y) - (x+y) = (x+y)(x-y-1)
5) x^2 - 4x + 9 = x^2 - 4x + 4 + 5 = (x - 2)^2 + 5
При любом х значение квадрата >= 0, а выражения >= 5