|x-1|>|x+2|-3 |x-1|-|x+2|>-3 Раскроем модули. Приравняем каждое подмодульное выражение к нулю и найдем точки,в которых подмодульные выражения меняют знак: x-1=0 x+2=0 x=1 x=-2 Нанесем эти значения Х на числовую прямую:
(-2)(1)
Мы получили три промежутка.Найдем знаки каждого подмодульного выражения на каждом промежутке:
(-2)(1) x-1 - - + x+2 - + +
Раскроем модули на каждом промежутке: 1)x<-2 На этом промежутке оба подмодульных выражения отрицательны,поэтому раскрываем модули с противоположным знаком: -x+1+x+2>-3 3>-3 - неравенство верное при любых Х на промежутке x<-2
2) -2<=x<1 На этом промежутке первое подмодульное выражение отрицательное(его мы раскроем с противоположным знаком),а второе - положительное, и его мы раскроем с тем же знаком: -x+1-x-2>-3 -2x-1>-3 -2x>1-3 -2x>-2 x<1 С учетом промежутка -2<=x<1 получаем x e [-2;1)
3)x>=1 На этом промежутке оба подмодульных выражения положительные, поэтому раскрываем их без смены знака: x-1-x-2>-3 -3>-3 Неравенство не имеет решений на этом промежутке Соединим решения 1 и 2 промежутков и получим такой ответ: x e(-беск.,1)
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z