М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ganshit
Ganshit
22.09.2022 19:52 •  Алгебра

решить: 4y в квадрате минус 4y плюс 1 = 0​

👇
Ответ:
ARKSHIM
ARKSHIM
22.09.2022

4y2 - 4y + 1 = 0

D = b2 + 4ac = 16 - 16 = 0

x = ( -b + \sqrt{D} ) / 2a = (4+0) / 8 = 0.5

4,7(30 оценок)
Ответ:
schastlivayolg
schastlivayolg
22.09.2022

Смотри решение на фото


решить: 4y в квадрате минус 4y плюс 1 = 0​
4,8(34 оценок)
Открыть все ответы
Ответ:
sertarsertar205
sertarsertar205
22.09.2022
5/9

Чтобы обратить периодическую дробь в обыкновенную, надо
из числа, стоящего до второго периода, вычесть число,
стоящее до первого периода, и записать эту разность числителем;

в знаменателе написать цифру 9 столько раз, сколько цифр в периоде,
и после девяток дописать  столько нулей, сколько цифр
между запятой и первым периодом. 
Например: 

0,(36) = (36-0)/99 =36/99 = 9*4/9*11 = 4/11;
5,8(12) = (5812-58)/990=5754/990=959/165

Для случая 0,1(6) получаем обыкновенную дробь 1/6,
а для случая 0,3(3) получаем обыкновенную дробь 1/3,
4,6(69 оценок)
Ответ:
Apelsinka32
Apelsinka32
22.09.2022
Метод неопределенных коэффициентов
(2x+1)/[(x-1)^2*(x^2+2x+3)] = A1/(x-1) + A2/(x-1)^2 + (A3*x+A4)/(x^2+2x+3) =
= [A1*(x-1)(x^2+2x+3) + A2*(x^2+2x+3) + (A3*x+A4)(x-1)^2] / [(x-1)^2*(x^2+2x+3)] =
= [A1(x^3+x^2+x-3)+A2(x^2+2x+3)+A3*x(x^2-2x+1)+A4(x^2-2x+1)] /
/ [(x-1)^2*(x^2+2x+3)] =
= [x^3(A1+A3)+x^2(A1+A2-2A3+A4)+x(A1+2A2+A3-2A4)+(-3A1+3A2+A4)] /
/ [(x-1)^2*(x^2+2x+3)] = (2x+1)/[(x-1)^2*(x^2+2x+3)]
Система
{ A1 + A3 = 0
{ A1 + A2 - 2A3 + A4 = 0
{ A1 + 2A2 + A3 - 2A4 = 2
{ -3A1 + 3A2 + A4 = 1

{ A3 = -A1
{ A1 + A2 + 2A1 + A4 = 0
{ 2A2 - 2A4 = 2
{ -3A1 + 3A2 + A4 = 1

{ A3 = -A1
{ A4 = A2 - 1
{ 3A1 + A2 + A2 - 1 = 0
{ -3A1 + 3A2 + A2 - 1 = 1

{ A3 = -A1
{ A4 = A2 - 1
{ 3A1 + 2A2 = 1
{ -3A1 + 4A2 = 2
Складываем 3 и 4 уравнения
6A2 = 3, A2 = 1/2, A4 = 1/2 - 1 = -1/2
3A1 + 2*1/2 = 1, A1 = 0, A3 = 0
Подставляем обратно в интеграл
Int (2x+1)/[(x-1)^2*(x^2+2x+3)] dx = 
= Int [1/2*1/(x-1)^2 - 1/2*1/(x^2+2x+3)] dx =
= 1/2*Int 1/(x-1)^2 dx - 1/2*Int 1/((x+1)^2+2) dx =
= -1/2*1/(x-1) - 1/2*1/sqrt(2)*arctg [(x+1)/sqrt(2)] + C
4,7(4 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ