При каких значениях параметров a и b: а) многочлен p(x)=x^4-3x^3+3x^2+ax+b делится без остатка на многочле t(x)=x^2-3x+2 хоть схему или алгоритм решения, а то от простого деления получается бяка((
Есть такое правило: чтобы определить, на какую цифру оканчивается число, нужно: 1)посмотреть на само число и найти последнюю цифру этого числа 2)производить операции будем с этой цифрой, в данном случае, с 3. 3)поделить степень этого числа на 4. далее самое интересное: 1)если у тебя степень делится на 4 без остатка, то это число будет оканчиваться на цифру числа в 4 степени. 2)если у тебя степень делится с остатком, то надо смотреть на остаток.если остаток 3, то число будет оканчиваться на эту же цифру, только в 3 степени этого же числа.если на 2, то число будет оканчиваться на ту же цифру, как и это число во второй степени. следуем по правилу: число 3 оканчивается на 3.значит, будем ее рассматривать(просто бывает что 12435 надо возвести в огромную степень, везде надо смотреть на последнюю цифру) далее, делим степень на 4: 17: 4=4 и остаток 1.значит, по правилу, число 3 в 17 степени будет оканчиваться на ту же цифру, как 3 в 1 степени.а 3 в первой степени=3. следовательно, 3 в 17 степени будет оканчиваться на 3 подробнее - на -
Пусть х литров молока в первом бидоне, а у литров - во втором. х+у=75 литров молока. Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х Составим и решим систему уравнений: х+у=75 у+2=1,2х
Выразим значение у в первом уравнении: у=75-х
Подставим его во второе уравнение (метод подстановки): у+2=1,2х 75-х+2=1,2х 77-х-1,2х=0 -2,2х=-77 2,2х=77 х=77:2,2 х=35 (литров молока) - в первом бидоне Тогда во втором у=75-х=75-35=40 литров. ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.