y=x^2-|4x+3| при х > -3/4 преобразуется к виду y=x^2-4x-3 = (х-2)^2-7 на участке от -3/4 до 2 график убывает от 0,5625 до -7 на участке от 2 до +беск график возрастает от -7 до + беск y=x^2-|4x+3| при х < -3/4 преобразуется к виду y=x^2+4x+3 = (х+2)^2-1 на участке от -беск до -2 график убывает от + беск до -1 на участке от -2 до -3/4 график возрастает от -1 до 0,5625 график несимметричный имеет 2 минимума и один максимум кривая у = м пересекает график y=x^2-|4x+3| ровно 3 раза только при м=-1 и при м=0,5625
2sin(x/2)=3sin²(x/2)
2sin(x/2)-3sin²(x/2)=0
sin(x/2) (2-3sin(x/2))=0
a) sin(x/2)=0
x/2=πk, k∈Z
x=2πk, k∈Z
b) 2-3sin(x/2)=0
-3sin(x/2)=-2
sin(x/2)=2/3
x/2=(-1)^n * arcsin(2/3)+πk, k∈Z
x=2*(-1)^n * arcsin(2/3)+2πk, k∈Z
ответ: 2πk, k∈Z;
2*(-1)^k*arcsin(2/3)+2πk, k∈Z.
2)
sin6xcosx+cos6xsinx=0.5
sin(6x+x)=0.5
sin7x=0.5
7x=(-1)^k*(π/6)+πk, k∈Z
x=(-1)^k*(π/42)+(π/7)*k, k∈Z
ответ: (-1)^k*(π/42)+(π/7)*k, k∈Z.
3)
3sinx+4sin(π/2+x)=0
3sinx+4cosx=0
a) При у=-1/2
k∈Z;
b) При у=2
k∈Z.
ответ: