1) Cosx = t
6t² + t -1 = 0
D = b² -4ac = 1 - 4*6*(-1) = 25 > 0
t₁ = (-1+5)/12 = 4/12 = 1/3
t₂ = (-1 -5)/12 = -1/2
a) Cosx = 1/3 б) Сosx = -1/2
x = +-arcCos(1/3) + 2πk , k ∈Z x = +-arcCos(-1/2) + 2πn , n ∈Z
x = +- 2π/3 +2πn , n ∈ Z
2) учтём, что Cosx = 2Cos²x/2 -1
наше уравнение:
Cosx/2 = 1 + 2Cos²x/2 -1
Cosx/2 = t
2Cos²x/2 - Cosx/2 = 0
Cosx/2(2Cosx/2 -1) = 0
Cosx/2 = 0 или 2Cosx/2 -1 = 0
x/2 = π/2 + 2πk , k ∈Z Cosx/2 = 1/2
x = π + 4πk , k ∈ Z x/2 = +-arcCos(1/2) + 2πn , n ∈ Z
x/2= +- π/3+ 2πn , n ∈ Z
x = +-2π/3 + 4 πn , n ∈ Z
1) Если a+b - однозначное число, то его сумма цифр совпадает с ним и
х+у+z=(10a+b)+(a+b)+(a+b)=60, откуда 12а+3b=60, т.е. 4а+b=20. Возможны следующие варианты: a=5, b=0; а=4, b=4. Если a<4, то b>8 и тогда а+b не является однозначным.
2) Если а+b - двузначное, то его первая цифра равна 1, а вторая равна a+b-10, т.е. z=1+(a+b-10)=а+b-9. Итак,
x+y+z=(10a+b)+(a+b)+(a+b-9)=60, откуда 12а+3b=69, т.е. 4а+b=23.
Возможен только вариант а=4, b=7, т.к. .если a=5, то b=3 и a+b=8 - однозначное, а все остальные, очевидно, не подходят.
Значит итоговый ответ: число х может быть 50, 44 или 47.