М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ladhice
ladhice
12.11.2022 12:34 •  Алгебра

37.2. Найдите значение выражения: 2х - 1
1)
при х = 3; 1; -5; -1,6; 100;
2)
За 7
2а + 5
при а= -2; – 0,4; 0; 2,5;
3)
6² +6
3b - 4
при b = 3; 4,4; 5; 6;
1
8
4) 2x +
при х =
x + 1
0,5; 1; 3;
2
у + 3
2 у
5)
+
при у = 1,5; 2,5; 4; 4,5;
2 у
у - 3
x + 3
6)
+
х
при х = --
; 1,5; 2; 3;
3
2
7)
(a + b) - 1
a²+1
2a-b
при а=-3, b = -1;
8)
при а = 1, b = 0,5.
1
а​

👇
Открыть все ответы
Ответ:
neketapro
neketapro
12.11.2022
Начнем с того, что я выпишу все формулы, которые я буду использовать здесь.
1. Разность квадратов.
a^2-b^2=(a+b)(a-b).
2. Приведение дробей к общему знаменателю.
\frac{a}{b}+ \frac{c}{d}= \frac{ad+bc}{bd}.
Причем, если знаменатели имеют общий множитель, то на него можно и не домножать. Как к примеру тут: \frac{a}{bx}+ \frac{c}{dx}= \frac{ad+bc}{bdx}.
3. Квадрат разности.
(a-b)^2=a^2-2ab+b^2.
4. Умножение дробей.
\frac{a}{b}* \frac{c}{d}= \frac{ac}{bd}.
(Числитель умножаем с числителем, а знаменатель - со знаменателем.)
5. Деление дробей.
\frac{a}{b}: \frac{c}{d}= \frac{a}{b}* \frac{d}{c}= \frac{ad}{bc}.
(Вторую дробь (делитель) переворачиваем, а знак деления заменяем умножением.)
6. Умножение многочлена на многочлен.
Чтобы умножить два многочлена между собой, надо каждый член первого многочлена умножить на каждый член второго многочлена.
(a+b)(c+d)=ac+ad+bc+bd.
1). Преобразуем немного наше выражение.
( \frac{x}{x^2-5^2}- \frac{x-8}{x^2-2*5*x+5^2}): \frac{x-20}{(x-5)^2} .
2). Видно, что в знаменателе первой дроби можно использовать формулу разности квадратов, а в знаменателе второй дроби полный квадрат (квадрат разности). Применим эти формулы.
(\frac{x}{(x-5)(x+5)}- \frac{x-8}{(x-5)^2}): \frac{x-20}{(x-5)^2}.
3). Приведем первые две дроби  общему знаменателю.
\frac{x(x-5)-(x-8)(x+5)}{(x+5)(x-5)^2} : \frac{x-20}{(x-5)^2}.

4). Раскрываем скобки в числителе первой дроби.
\frac{x^2-5x-x^2+3x+40}{(x+5)(x-5)^2} : \frac{x-20}{(x-5)^2}.
5). Приводим подобные слагаемые.
\frac{40-2x}{(x+5)(x-5)^2} : \frac{x-20}{(x-5)^2}.
6). Делим, а затем умножаем дроби.
\frac{40-2x}{(x+5)(x-5)^2} * \frac{(x-5)^2}{x-20}= \frac{(40-2x)(x-5)^2}{(x+5)(x-5)^2(x-20)} .
7). Сокращаем дроби и выносим общий множитель (-2) в числителе.
\frac{(40-2x)}{(x+5)(x-20)}= \frac{-2(x-20)}{(x+5)(x-20)} .
8). Опять сокращаем.
\frac{-2}{x+5}=- \frac{2}{x+5} .
ответ: - \frac{2}{x+5}.
4,8(78 оценок)
Ответ:
хюрем3
хюрем3
12.11.2022
Начнем с того, что я выпишу все формулы, которые я буду использовать здесь.
1. Разность квадратов.
a^2-b^2=(a+b)(a-b).
2. Приведение дробей к общему знаменателю.
\frac{a}{b}+ \frac{c}{d}= \frac{ad+bc}{bd}.
Причем, если знаменатели имеют общий множитель, то на него можно и не домножать. Как к примеру тут: \frac{a}{bx}+ \frac{c}{dx}= \frac{ad+bc}{bdx}.
3. Квадрат разности.
(a-b)^2=a^2-2ab+b^2.
4. Умножение дробей.
\frac{a}{b}* \frac{c}{d}= \frac{ac}{bd}.
(Числитель умножаем с числителем, а знаменатель - со знаменателем.)
5. Деление дробей.
\frac{a}{b}: \frac{c}{d}= \frac{a}{b}* \frac{d}{c}= \frac{ad}{bc}.
(Вторую дробь (делитель) переворачиваем, а знак деления заменяем умножением.)
6. Умножение многочлена на многочлен.
Чтобы умножить два многочлена между собой, надо каждый член первого многочлена умножить на каждый член второго многочлена.
(a+b)(c+d)=ac+ad+bc+bd.
1). Преобразуем немного наше выражение.
( \frac{x}{x^2-5^2}- \frac{x-8}{x^2-2*5*x+5^2}): \frac{x-20}{(x-5)^2} .
2). Видно, что в знаменателе первой дроби можно использовать формулу разности квадратов, а в знаменателе второй дроби полный квадрат (квадрат разности). Применим эти формулы.
(\frac{x}{(x-5)(x+5)}- \frac{x-8}{(x-5)^2}): \frac{x-20}{(x-5)^2}.
3). Приведем первые две дроби  общему знаменателю.
\frac{x(x-5)-(x-8)(x+5)}{(x+5)(x-5)^2} : \frac{x-20}{(x-5)^2}.

4). Раскрываем скобки в числителе первой дроби.
\frac{x^2-5x-x^2+3x+40}{(x+5)(x-5)^2} : \frac{x-20}{(x-5)^2}.
5). Приводим подобные слагаемые.
\frac{40-2x}{(x+5)(x-5)^2} : \frac{x-20}{(x-5)^2}.
6). Делим, а затем умножаем дроби.
\frac{40-2x}{(x+5)(x-5)^2} * \frac{(x-5)^2}{x-20}= \frac{(40-2x)(x-5)^2}{(x+5)(x-5)^2(x-20)} .
7). Сокращаем дроби и выносим общий множитель (-2) в числителе.
\frac{(40-2x)}{(x+5)(x-20)}= \frac{-2(x-20)}{(x+5)(x-20)} .
8). Опять сокращаем.
\frac{-2}{x+5}=- \frac{2}{x+5} .
ответ: - \frac{2}{x+5}.
4,4(71 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ