Рассмотрим для начала f(x) = -x + 12x - 34
Производная:
f'(x) = -2x + 12
f'(x) = 0 —> x = 6 - аргумент, при котором достигается максимальное значение.
f(6) = 2
9^ (-34 + 12x - x) принимает максимальное значение, когда -34 + 12x - x максимально, то есть равно двум. Значит максимум равен 9 = 81
ответ: 81
Объяснение:
функция показательная и т.к. основание 9 больше единицы, то функция возрастает, следовательно, наибольшее значение достигается при наибольшем х.
рассмотрим степень как вторую функцию – параболу, ветви которой направлены вниз: наибольшее значение этой параболы будет в её вершине
по формуле найдем абциссу вершины –b/2а. Абцисса равна –6, следовательно оридината равна –34+12·6–36=2
следовательно наибольшее значение функции у=9 во второй степени т.е. 81
Правильное условие такое:
Мяч брошен вертикально вверх с начальной скоростью 24 м/с. Зависимость расстояния h (в метрах) от мяча до земли от времени полета выражается формулой h = 24t − 5t² .
Дано:
V₀=24м/с
Найти: h; t
1) Скорость - это производная от расстояния.
V = h'
V = ( 24t − 5t²)'
V = 24 - 10t
Получили формулу, которая показывает зависимость скорости V
(в м/с) от времени полета t .
2) V = 24 - 10t
V - конечная скорость, которая в момент достижения мячом наибольшей высоты равна 0.
Решим уравнение и найдем время t.
0 = 24 - 10t
10t = 24
t = 24:10
t = 2,4
t=2,4 с - время полёта мяча снизу до наибольшей высоты.
3) Находим значение наибольшей высоты, на которую поднимется мяч за t=2,4c.
h=24t-5t² при t=2,4c.
h = 24·2,4 - 5·2,4² = 2,4·(24-5·2.4) = 2,4·(24-12) = 2,4·12= 28,8 м
4) Найдем tₓ все время полета от броска с земли до момента падения его на землю
tₓ = 2t = 2 · 2,4 = 4,8c
ответ: 28,8 м; 4,8c
Объяснение:
^-4 - это минус четвертая степень.