Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
{-17х² + 13у² - 220 = 0
Из первого уравнения х = 13у - 110
Вместо х подставим во второе уравнение
- 17 * (13у - 110)² + 13у² - 220 = 0
- 17 * (169у² - 2860у + 12100) + 13у² - 220 = 0
- 2873у² + 48620у - 205700 + 13у² - 220 = 0
- 2860у² + 48620у - 205920 = 0
Сократив на (- 2860), имеем
у² - 17у + 72 = 0
D = 289 - 4 * 1 * 72 = 289 - 288 = 1
√D = √1 = 1
у₁ = (17 + 1)/2 = 9
у₂ = (17 - 1)/2 = 8
При у₁ = 9 находим х₁ = 13*9 - 110 = 117 - 110 = 7 Первое решение {7; 9}
При у₂ = 8 находим х₂ = 13*8 - 110 = 104 - 110 = - 6 Второе решение {-6; 8}
ответ: {7; 9} и {-6; 8}
2 задание
n-m =(a-2)²
p-n=(b-3)²
m-p=(c-4)²
Извлекаем корни из обеих частей каждого равенства
√(n-m) = √(a-2)²
√(p-n) = √(b-3)²
√(m-p) = √(c-4)²
Получаем
√(n-m) = a-2
√(p-n) = b-3
√(m-p) = c-4
Складываем все эти три равенства
√(n-m) + √(p-n) + √(m-p) = a + b + c - 2 - 3 - 4
√(n-m) + √(p-n) + √(m-p) = a + b + c - 9
√(n-m) + √(p-n) + √(m-p) + 9 = a + b + c
Искомая сумма получена
a + b + c = √(n-m) + √(p-n) + √(m-p) + 9