М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
liliaadderson
liliaadderson
10.05.2021 23:27 •  Алгебра

Найдите область определения функции: (1) f(x) = x^2 - 2x +1 : x-1 (2) f(x) = 2x+6 : x^2 + 3x

👇
Ответ:
Rustamka45
Rustamka45
10.05.2021
f(x)=\cfrac{x^2-2x+1}{x-1}\\x-1\neq 0\\x\neq 1\\x\in (-\infty; 1)\cup (1;+\infty)\\f(x)=\cfrac{2x+6}{x^2+3x}\\x^2+3x\neq 0\\x\neq 0\\x\in (-\infty;0)\cup (0;+\infty)
4,6(4 оценок)
Открыть все ответы
Ответ:
hbkkb
hbkkb
10.05.2021
1) y = 6x - 11
y' = 6
2) y = x - 1/2
y' = 1
3) y = x^2 + sinx
y' = 2x + cosx
y'(x0) = 2*pi + cos(pi) = 2*pi - 1
4) y = (x^4)/2 - (3*x^2)/2 + 2x
y' = 1/2 * 4x^3 - 1/2 * 6x + 2 = 2x^3 - 3x + 2
y'(x0) = 2*8 - 3*2 + 2 = 16 - 6 + 2 = 12
5) y = sin(3x-2)
y' = cos(3x-2)*(3x-2)' = 3cos(3x-2)
6) не поняла, что знак "V" обозначает, пусть будет делением
y = 3x^2 - 12/x
y' = 6x - 12*(-1/(x^2)) = 6x + 12/(x^2)
y'(x0) = 6*4 + 12/16 = 24 + 3/4 = 24,75
7) y = 1/(2tg(4x-pi)) + pi/4 
y' = -1/(2tg^2(4x-pi)) * 1/cos^2(4x-pi) * 4 + 0 = -2/(tg^2(4x-pi)*cos^2(4x-pi)) = -2/sin^2(4x-pi)
4,4(94 оценок)
Ответ:
LentaKuim
LentaKuim
10.05.2021
Дано: sinx-siny=m; cosx+cosy=n. Найти: sin(x-y) и cos(x-y).
Решение:
1. Воспользуемся формулами разность синусов и сумма косинусов:
sinx-siny=2sin \frac{x-y}{2}cos \frac{x+y}{2}=m; cosx+cosy=2cos \frac{x+y}{2}cos \frac{x-y}{2}=n.
Заметим, что оба равенства содержат один и тот же член: cos \frac{x+y}{2}. Выразим его из обоих равенств:
cos \frac{x+y}{2}= \frac{m}{2sin \frac{x-y}{2}};cos \frac{x+y}{2}= \frac{n}{2cos \frac{x-y}{2}}.
В получившихся равенствах левые части равны, значит, равны и правые части:
\frac{m}{2sin \frac{x-y}{2}}= \frac{n}{2cos \frac{x-y}{2}}.
Преобразуем данное равенство:
\frac{2sin \frac{x-y}{2}}{2cos \frac{x-y}{2}}= \frac{m}{n};
\frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}}= \frac{m}{n};
( \frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}})^{2}=( \frac{m}{n})^{2};
\frac{sin^{2} \frac{x-y}{2}}{cos^{2} \frac{x-y}{2}}= \frac{m^{2}}{n^{2}};
Теперь используем формулы понижения степени синуса и косинуса:
\frac{1-cos(x-y)}{2}: \frac{1+cos(x-y)}{2}= \frac{m^{2}}{n^{2}};
Преобразуем данное равенство:
\frac{1-cos(x-y)}{1+cos(x-y)}= \frac{m^{2}}{n^{2}};
n²(1-cos(x-y))=m²(1+cos(x-y));
n²-n²cos(x-y)=m²+m²cos(x-y);
m²cos(x-y)+n²cos(x-y)=n²-m²;
cos(x-y)(m²+n²)=n²-m²;
cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
Используя основное тригонометрическое тождество, выразим sin(x-y):
sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}}.
ответ: sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}};cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
4,5(35 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ