Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
Пусть х, у (км/ч) - скорости велосипедиста и мотоциклиста соответственно, тогда за 1 мин = 1/60 ч они преодолевают расстояния, равные х/60 и у/60 (км) - соответственно, а путь 120 км проделывают за 120/х и 120/у (ч) - соответственно. По условию за 1 мин велосипедист проехал на 600 м = 3/5 км меньше и расстояние 120 км - за время на 3 ч большее. Составим и решим систему: у/60 - х/60 = 3/5; 120/х - 120/у = 3 у - х = 36; 40/х - 40/у = 1 х = у - 36; 40/(у - 36) - 40/у = 1 х = у - 36; 40у - 40(у - 36) = у(у - 36) х = у - 36; 40у - 40у + 1440 = у^2 - 36у х = у - 36; у^2 - 36у - 1440 = 0 х = у - 36; у^2 - 36у + 324 - 1764 = 0 х = у - 36; (у - 18)^2 - 42^2 = 0 х = у - 36; (у - 18 - 42)(у - 18 + 42) = 0 х = у - 36; (у - 60)(у + 24) = 0 х = у - 36; у1 = 60 км/ч, у2 = -24 - второе значение у противоречит условию (скорость не должна быть отрицательной) х = 60 - 36 = 24 км/ч, у = 60 км/ч. ответ: скорость велосипедиста 24 км/ч, мотоциклиста - 60 км/ч
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например,
, но сейчас это не нужно), нам повезло, это 32
Учитываем, что
, получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.