1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.
Что значит вынести общий множитель за скобки?Чтобы успешно справляться с вынесением общего множителя за скобки, необходимо хорошо понимать, с какими выражениями проводится это преобразование и что в результате него получается. Разберемся с этим.Вынесение общего множителя за скобки проводится в суммах, в которых каждое из составляющих из слагаемых представляет собой произведение, причем в каждом из этих произведений присутствует одинаковый множитель. Этот одинаковый множитель и называетсяобщим множителем, и именно он выносится за скобки.Например, произведения 2·3 и 2·4 имеют общий множитель 2. Тогда в сумме вида 2·3+2·4можно выполнить вынесение общего множителя за скобки.Так в чем же заключается вынесение общего множителя за скобки? Оно состоит в представлении исходного выражения в виде произведения общего множителя и выражения в скобках, которое содержит сумму всех изначальных слагаемых, но без общего множителя.Для пояснения, вернемся к нашему примеру. Выражение 2·3+2·4 после вынесения общего множителя 2 за скобки примет вид 2·(3+4). Полученное выражение 2·(3+4) есть произведение общего множителя 2 и выражения в скобках (3+4), представляющего собой сумму исходных слагаемых 2·3+2·4, но без общего множителя 2.В основе вынесения общего множителя за скобки лежит известное с начальной школы распределительное свойство умножения относительно сложения, которое задается равенствомa·(b+c)=a·b+a·c. Поменяв в этом равенстве местами левую и правую часть, оно примет видa·b+a·c=a·(b+c), откуда становится видно, что правая его часть равна левой части, в которой вынесен за скобки общий множитель a.