Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
S= n(n+1)/2= 243k= 3^5*k.
n(n+1)= 2*243k= 486k= 2*3^5*k.
Значит, нужно найти два последовательных натуральных числа, произведение которых должно быть делимо и на 2 (т. е. одно из них д. б. чётным, что всегда соблюдается) и на 3^5. Если оно из чисел делится на 3, то соседние ему числа не делятся на 3. Следовательно, одно из чисел обязательно должно быть делимо на 3^5= 243. Наименьшее из таких чисел: 243. Рядом с ним есть два числа: 242 и 244. Выбираем меньшее из них: 242. Таким образом, n= 242.
2,5
Объяснение:
лучший ответ и лайк