Решение: Обозначим кольцевой маршрут по времени прохождения автобусов за 1(единицу) тогда интервал ожидания при курсировании 25-ти автобусов составит: 1 : 25=1/25 (времени), равный 100% При увеличении на маршрут 6-ти автобусов, при общем их количестве: 25+6=31 (автобусов), интервал ожидания при курсировании составит: 1 : 31=1/31 (времени), равный х % На основании этих данных, составим пропорцию: 1/25 - 100% 1/31 - х% х=1/31*100 :1/25=100/31 :1/25=100*25/31=2500/31≈80% Отсюда делаем вывод, что при добавлении на маршрут 6-ти автобусов, интервал ожидания уменьшится на : 100% - 80%=20%
Исходное число должно быть четырехзначным. Пусть исходное число будет ABCD=1000A+100B+10C+D. Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016: 1000A+100B+10C+D-(А+В+С+D)=2016 Раскроим скобки и решим: 1000A+100B+10C+D-А-В-С-D=2016 999А+99В+9С=2016 Сократим на 9: 111А+11В+С=224 Очевидно, что 1<А>3, т.е. А=2 (2000). 111*2+11В+С=224 222+11В+С=224 11В+С=224-222 11В+С=2 С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число. Значит В=0, тогда С=2-11*0=2 Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029. 9 – максимальное значение D, значит наибольшее возможное исходное значение 2029. Проверим: 2029 – (2+2+0+9)=2029-13=2016 ответ: наибольшее возможное исходное значение число 2029