Прямоугольник и ромб, не являющиеся квадратами имеют по 2 оси симметрии, а квадрат 4 оси симметрии
Объяснение:
Ромб имеет две оси симметрии второго порядка, (т.е. для совпадения нужно повернуть ромб вокруг этой оси на 1/2 полного оборота), в плоскости, в которой лежит ромб, и одну ось симметрии второго порядка, перпендикулярную плоскости, в которой лежит ромб.
А) (х-10) в квадрате + (у+1) в квадрате =16 центр(10;-1) R=4 б) (х-4) в квадрате +( у-5) в квадрате = 144 центр (4;5) R=12 2) Постройте график уравнения а) (х+2) в квадрате + ( у+1) в квадрате = 16 окружность с центром в точке (-2;-1) и R=4единичных отрезка б)(х-3) в квадрате + (у+5) в квадрате =1 окружность с центром в точке(3;-5)и R=1 ед. отр. в) ( х-4) в квадрате + ( у-1) в квадрате = 9 окружность с центром в точке(4;1) и R=3 ед. отр. г) (х+1) в квадрате + ( у-3) в квадрате = 4 окружность с центром в точке(-1;3) и R=2 ед.отр.
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
Прямоугольник и ромб, не являющиеся квадратами имеют по 2 оси симметрии, а квадрат 4 оси симметрии
Объяснение:
Ромб имеет две оси симметрии второго порядка, (т.е. для совпадения нужно повернуть ромб вокруг этой оси на 1/2 полного оборота), в плоскости, в которой лежит ромб, и одну ось симметрии второго порядка, перпендикулярную плоскости, в которой лежит ромб.