М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
daryanashpakov
daryanashpakov
18.01.2023 13:59 •  Алгебра

Найдите угол альфа, если:
1) cos^2α - sin^2α=1/2
2) sinαcosα=1/4


Найдите угол альфа, если: 1) cos^2α - sin^2α=1/2 2) sinαcosα=1/4

👇
Ответ:
ника2757
ника2757
18.01.2023

Попробуй сделать в фотомесе,там должно быть

4,5(72 оценок)
Открыть все ответы
Ответ:
Алёнка7913
Алёнка7913
18.01.2023
х³-5х²-2х+24=0
Корни уравнения надо искать среди делителей свободного слагаемого.
Делители числа 24:
1;2;3;4;6;12;24
-1;-2;-3;-4;-6;-12;-24
Проверкой убеждаемся, что х=2 - корень уравнения
В самом деле.
(-2)³-5·(-2)²-2·(-2)+24=0
-8-20+4+24=0
-28+28=0 - верно.
Значит, левая часть раскладывается на множители, один из которых (х-(-2))=х+2
Делим
-х³-5х²-2х+24   | x+2
 x³+2x²              x²-7x+12

   _-7x²-2x+24
     -7x²-14x
    
         _12x+24
           12x+24
          
                 0

х³-5х²-2х+24=0
(x+2)(x²-7x+12)=0
x+2=0     или    х²-7х+12=0
х=-2                х=(7-1)/2=3  или  х=(7+1)/2=4
О т в е т. -2; 3; 4.
4,5(12 оценок)
Ответ:
ezdar04
ezdar04
18.01.2023
Три условия

N = 2p\\ N = q^3\\ N = 2r^2

Итак, первое условие выполнится, если выполнится третье, поэтому сосредоточимся на последних двух

N = q^3 = 2r^2

Как видим, q обязано делиться на 2. Поэтому

q = 2q_1\\ 8q_1^3 = 2r^2\\ 4q_1^3 = r^2

Теперь и r должно делиться на 2, чтобы r^2 делилось на 4

r = 2r_1\\ q_1^3 = r_1^2

Ну все, теперь задача найти все такие кубы q_1^3 , чтобы они еще были и квадратами. Тогда исходное число найдем в виде

N = q^3 = 8q_1^3

Заметим, что область поиска ограничена, ибо
N\ \textless \ 1000000\\
8q_1^3\ \textless \ 1000000\\
q_1^3\ \textless \ 125000 = (50)^3 = (5\sqrt{2})^6

Куб числа q можно разложить на простые множители:
q_1^3 = \pi_1^{3m_1}\pi_2^{3m_2}...\pi_z^{3m_z}

Чтобы это число было еще и квадратом, необходимо чтобы все степени простых чисел были еще и четными. То есть годятся 0, 6, 12 и так далее степени простых чисел. Одним словом, q_1^3 должно быть 6-й степенью некого натурального числа x, причем это число должно быть меньше 5√2≈7.07. Таких x существует ровно 7, и это ответ. Но ниже мы приведем все исходные числа 

x = 1,2,3,4,5,6,7\\
N = 8q_1^3 = 8x^6 = 8, 512, 5832, 32768,125000,373248,941192

Еще раз подчеркнем, что общая формула для чисел, удовлетворяющих условиям задачи

N = 8x^6,\qquad x\in\mathbb{N}
4,7(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ