Пусть масса первого раствора равна х г, а масса второго раствора равна у г. По условию, х+у=800 (г) -это первое уравнение системы. 35% от 800 г равны 800*35%:100%=280 г Масса 20% первого раствора равны 0,2х г, а 40% второго раствора равны 0,4у г. Получаем, 0,2х+0,4у=280 (г) - это второе уравнение системы Решим систему уравнений: {x+y=800 {0,2x+0,4y=280
{x=800-y {0,2(800-y)+0,4y=280 160-0,2y+0,4y=280 0,2y=120 y=120:0,2 y=600 (г)-масса второго раствора х=800-600=200(г)-масса первого раствора
ответ: Необходимо взять 200 г первого и 600 г второго раствора
log₇ (x² - 9) - log₇ (9 - 2x) = 1
ОДЗ :
1) x² - 9 > 0; (x + 3) (x - 3) > 0
Метод интервалов
(-3) (3) > х
x ∈ (-∞; -3) ∪ (3; +∞)
2) 9 - 2x > 0; 2x < 9; x < 4,5
ОДЗ : x ∈ (-∞; -3) ∪ (3; 4,5)
log₇ (x² - 9) = log₇ (9 - 2x) + 1
log₇ (x² - 9) = log₇ (9 - 2x) + log₇7
log₇ (x² - 9) = log₇ (7 · (9 - 2x))
x² - 9 = 7 · (9 - 2x)
x² + 14x - 72 = 0 Квадратное уравнение, корни по т. Виета
(x + 18)(x - 4) = 0
1) x + 18 = 0; x₁ = -18; x₁ ∈ (-∞; -3) ∪ (3; 4,5)
2) x - 4 = 0; x₂ = 4; x₂ ∈ (-∞; -3) ∪ (3; 4,5)
ответ: x₁ = -18; x₂ = 4
Использованы формулы
logₐ a = 1
logₐ b + logₐ d = logₐ (b · d)