1)
a) x < -5; x ∈ (-∞; -5)
б) x >= -5 ; x ∈ [-5; +∞)
в) x <= - 5 ; x ∈ (-∞; -5]
г) x > - 5; x ∈ (-5; +∞)
ответ : б)
2)
6 - положительное, целое - натуральное
3/7 - нецелое (0 < 3/7 < 1) - не натуральное
√2 - нецелое (1 < √2 < 2) - не натуральное
0 - не положительное - не натуральное
-8 - не положительное - не натуральное
-3,9 - не положительное - не натуральное
37 - положительное, целое - натуральное
п - 3,14 - положительное, целое - натуральное
-√7 - не положительное - не натуральное
ответ: 26, 37, п
3)
3√49 - 3(√2)^2
3√49 = 3*7=21
21 - 3(√2)^2
21 - 3*2 = 21 - 6 = 15
4)
5х-15<0
2x-3>=0
5x<15
2x>=3
x=3
x=3/2=1.5
x е [1.5; 3)
5) 35/3√7 * √7/√7 = 5*7*√7/3*7= 5√7/3
6)
√7×√63 - √27 ÷ √12=
=√441 - √27 ÷ √4 =
= 21 - 3÷2 =
= 39÷2 =
= 19,5
Положим, у Вас есть график у=f(х), если Вам надо построить график у=f(x+4), передвигаете вдоль оси ох на 4 единицы влево график функции у=f(х), если строите график у=f(x-4), то передвигаете на 4единицы вправо график у=f(х).
По Вашему рисунку 5, сначала строите график у=sinx, а затем переносите этот график на π/3 вправо, т.е. на две клетки тетрадной страницы и получаете график у=sin(x-π/3), т.к. отнимаем от аргумента π/3
Если бы пришлось к функции добавить 4 единицы, график подняли бы на 4единицы вверх, если отняли 4 единицы, то график опустили бы на 4 единицы вниз.
по первой картинке 4. Просто построили график у=cosx по точкам, а потом умножили на 1/2, т.е. сплюстнули в два раза график, он стал ниже в два раза, если бы был у=2cosx , то график стал бы выше в два раза.
Вот такие вот преобразования графика тригонометрической функции.
3- 5(-1)= 8
у=8
б) при -10
10=3-5х
5х=7
х=7/5
х=1,4