Пусть x1,x2-части малого луга, которые косили cын и отец.V1 и V2 cкорости выполнения работ cына и отца.Тк время выполнения до и после смены было одинаковым.то x1/V1=8/7 * 3/4(x1+x2)/V2=6/7 *(x1+x2)/V2 x2/V2=8/7*1/4*(x1+x2)/V1=2/7*(x1+x2)/V1 преобразуем эти 2 выражения x1=6/7* (x1+x2)*V1/V2 x2=2/7*(x1+x2)*V2/V1 сложим эти уравнения поочленно получим (x1+x2 )=(x1+x2)(6/7 *V1/V2 +2/7 *V2/V1) откуда поделив обе части на x1+x2 и умножив на 7 и сделав замену V2/V1=t получим 7=6/t+2t 2t^2-7t+6=0 D=49-48=1 t=7+-1/4 t1=2 t2=3/2 но с учетом того что сын скосил до замены больше половины своего луга то можно показать что отец не мог быть быстрее сына чем в 3/2 раза ответ:в 3/2 раза
Пусть время 1-го рабочего, затраченное на всю работу - х, а 2-го рабочего - у.
Тогда производительность 1-го рабочего 1/х, а 2-го рабочего - 1/у.
7/х -работа 1-го рабочего в течение 7 часов, 4/у - работа 2-го рабочего в течение 4-х часов. Они выполнили 5/9 всей работы.
7/х + 4/у = 5/9 (1)
осталось им выполнить 4/9 работы.
Работа 1-го рабочего за 4 часа 4/х, 2-го рабочего за 4 часа - 4/у.
После этого осталось 1/18 работы.
4/9 - (4/х + 4/у) = 1/18 (2)
Из (1) 4/у = 5/9 - 7/х (3)
Подставим (3) в (2)
4/9 - (4/х + 5/9 - 7/х ) = 1/18
4/9 - 4/х - 5/9 + 7/х = 1/18
- 1/9 + 3/х = 1/18
3/х = 3/18
х = 18
из (3) 4/у = 5/9 - 7/18
4/у = 10/18 - 7/18
4/у = 1/6
у = 24
ответ: 1-й рабочий сделает всю работу за 18 часов, а 2-й - за 24 часа.