Решение 1) y =x^3+x-6 y=x^3 Находим производную по формуле степенной функции x∧n = n*x∧(n-1) получаем: 3х∧2 производная от х равна 1 Производная от 6 как от постоянной равна 0 Получаем производную от данной функции: 3х∧2 + 1 2) y= -1/x^3+1/x+1 Вначале преобразуем нашу функцию: у = - х∧(- 3) + х∧(- 1) + 1 Находим производную от ( - х∧(- 3)) по формуле степенной функции x∧n = n*x∧(n-1) получаем: -3х∧(-3+1) =-3х∧(-4) = - 3/х∧4 Находим производную от(х∧(- 1)) по формуле степенной функции x∧n = n*x∧(n-1) получаем: - х∧(-2) = -1/√х Производная от1 как от постоянной равна 0 Получаем производную от данной функции: - 3/х∧4 + -1/√х
В числителе сгруппируй в скобках a+b и a^2-b^2. Второе выражение есть квадрат разности, которое представляешь как произведение суммы а и b на их разность. Теперь ты можешь вынести за скобки а+b, а в скобках останется 1+а-b,т.е. а. С числителем разобрались. Теперь знаменатель. Опять группируешь в скобках a-b и а^2-2ab+b^2. Второе выражение есть ни что иное, как квадрат разности a и b. Так и запишем (a+b)^2 или (a+b)(a-b). Теперь можем вынести за скобки (a-b), а в скобках остается 1+a-b Это выражение сокращается. Дробь упростилась до вида (a+d)/(a-b)/ Далее подставляй на место а и b числовые значения и решай.
удачи) Надеюсь )