Решите систему уравнений методом подстановки общая скобка один пример сверху другой снизу 3x-y=-5. -5x+2y=1, т. е из одного уравнения выразить одну переменную и подставить во второе. Из двух уравнений проще выразить из первого у, т. к. коэффициент равен 1, получим 3x-y=-5 -5x+2y=1 Выражаем у из первого уравнения и ставим во второе у=3х+5 -5х+2(3х+5)=1 Раскрываем скобки у=3х+5 -5х+6х+10=1 Приводим подобные у=3х+5 х+10=1 Отсюда у=3(-9)+5 х=1-10 Или решением неравенства будет пара у=-22 х=-9 Проверка 3(-9)-(-22)=-5 -5(-9)+2(-22)=1 Произведем вычисления -27+22=-5 45-44=1 или 5=-5 1=1 Т. к. получили верное равенство, значит, решили правильно ответ: х=-9 и у=-22 или (-9;-22) Удачи!
Метод подстановки. если есть система, например, х + y = 10 xy = 1. то можно выразить х или у. из первого уравнения x = 10 - y, выразили х, при этом у перенесли с обратным знаком направо. теперь вместо х во втором уравнении подставляем его выражение: xy = 1 => (10 - y)y = 1, -1 + 10y + y^2 = 0. не удачное, но квадратное уравнение. принцип: выразить одно через другое, и это одно везде заменить его выражением. сложение. например, дана система, ax + by = a cx - dy = b. здесь буквы, кроме х и у, это просто некоторые числа, абстрактно. и если вот таким образом: ax+cx + by - dy = a + b (к первому уравнению прибавили второе) cx - dy = b, (второе остаётся без изменения) из первого уравнения сразу выражается какая-нибудь переменная как число, то потом во второе подставляется вместо этой переменной число. возможно, таких сложений надо будет сделать несколько. возможно, будет лучше ко второму прибавлять первое, тогда без изменений останется первое.
3x-y=-5
-5x+2y=1
Выражаем у из первого уравнения и ставим во второе
у=3х+5
-5х+2(3х+5)=1
Раскрываем скобки
у=3х+5
-5х+6х+10=1
Приводим подобные
у=3х+5
х+10=1
Отсюда
у=3(-9)+5
х=1-10
Или решением неравенства будет пара
у=-22
х=-9
Проверка
3(-9)-(-22)=-5
-5(-9)+2(-22)=1
Произведем вычисления
-27+22=-5
45-44=1
или
5=-5
1=1
Т. к. получили верное равенство, значит, решили правильно
ответ: х=-9 и у=-22 или (-9;-22)
Удачи!